Suppr超能文献

基于深度学习的皮肤厚度半自动弱标注方法。

Semi-automated weak annotation for deep neural network skin thickness measurement.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Department of Dermatology, Duke University Medical Center, Durham, NC, USA.

出版信息

Ultrason Imaging. 2021 Jul;43(4):167-174. doi: 10.1177/01617346211014138. Epub 2021 May 11.

Abstract

Correctly calculating skin stiffness with ultrasound shear wave elastography techniques requires an accurate measurement of skin thickness. We developed and compared two algorithms, a thresholding method and a deep learning method, to measure skin thickness on ultrasound images. Here, we also present a framework for weakly annotating an unlabeled dataset in a time-effective manner to train the deep neural network. Segmentation labels for training were proposed using the thresholding method and validated with visual inspection by a human expert reader. We reduced decision ambiguity by only inspecting segmentations at the center A-line. This weak annotation approach facilitated validation of over 1000 segmentation labels in 2 hours. A lightweight deep neural network that segments entire 2D images was designed and trained on this weakly-labeled dataset. Averaged over six folds of cross-validation, segmentation accuracy was 57% for the thresholding method and 78% for the neural network. In particular, the network was better at finding the distal skin margin, which is the primary challenge for skin segmentation. Both algorithms have been made publicly available to aid future applications in skin characterization and elastography.

摘要

正确地利用超声剪切波弹性成像技术计算皮肤硬度需要精确测量皮肤厚度。我们开发并比较了两种算法,一种是阈值法,另一种是深度学习法,以测量超声图像上的皮肤厚度。在这里,我们还提出了一个框架,以便以有效的方式对未标记的数据集进行弱注释,从而训练深度神经网络。使用阈值法提出了用于训练的分割标签,并通过人工专家读者的视觉检查进行了验证。我们通过仅检查中心 A 线处的分割来减少决策的模糊性。这种弱注释方法可以在 2 小时内验证超过 1000 个分割标签。设计了一个轻量级的深度神经网络,可以对整个 2D 图像进行分割,并在这个弱标记数据集上进行训练。在六次交叉验证的平均值中,阈值法的分割准确率为 57%,神经网络的分割准确率为 78%。特别是,该网络在寻找皮肤远端边界方面表现更好,这是皮肤分割的主要挑战。这两种算法都已公开发布,以帮助未来在皮肤特征描述和弹性成像方面的应用。

相似文献

6
Fast interactive medical image segmentation with weakly supervised deep learning method.基于弱监督深度学习方法的快速交互式医学图像分割。
Int J Comput Assist Radiol Surg. 2020 Sep;15(9):1437-1444. doi: 10.1007/s11548-020-02223-x. Epub 2020 Jul 11.
7
Unsupervised domain adaptation method for segmenting cross-sectional CCA images.用于分割横断面颈总动脉图像的无监督域适应方法。
Comput Methods Programs Biomed. 2022 Oct;225:107037. doi: 10.1016/j.cmpb.2022.107037. Epub 2022 Jul 22.
8
3D Image Segmentation With Sparse Annotation by Self-Training and Internal Registration.基于自训练和内部配准的稀疏标注三维图像分割。
IEEE J Biomed Health Inform. 2021 Jul;25(7):2665-2672. doi: 10.1109/JBHI.2020.3038847. Epub 2021 Jul 27.

本文引用的文献

5
DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation.DeepIGeoS:用于医学图像分割的深度交互式测地线框架。
IEEE Trans Pattern Anal Mach Intell. 2019 Jul;41(7):1559-1572. doi: 10.1109/TPAMI.2018.2840695. Epub 2018 Jun 1.
7
An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.一种用于评估皮肤和肺部疾病的超声表面波技术。
Ultrasound Med Biol. 2018 Feb;44(2):321-331. doi: 10.1016/j.ultrasmedbio.2017.10.010. Epub 2017 Dec 1.
8
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
10
Systemic sclerosis.系统性硬化症。
Lancet. 2017 Oct 7;390(10103):1685-1699. doi: 10.1016/S0140-6736(17)30933-9. Epub 2017 Apr 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验