Suppr超能文献

玉米改良中杂种优势利用的遗传机制。

The genetic mechanism of heterosis utilization in maize improvement.

机构信息

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.

National Maize Improvement Center, Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

出版信息

Genome Biol. 2021 May 10;22(1):148. doi: 10.1186/s13059-021-02370-7.

Abstract

BACKGROUND

In maize hybrid breeding, complementary pools of parental lines with reshuffled genetic variants are established for superior hybrid performance. To comprehensively decipher the genetics of heterosis, we present a new design of multiple linked F1 populations with 42,840 F1 maize hybrids, generated by crossing a synthetic population of 1428 maternal lines with 30 elite testers from diverse genetic backgrounds and phenotyped for agronomic traits.

RESULTS

We show that, although yield heterosis is correlated with the widespread, minor-effect epistatic QTLs, it may be resulted from a few major-effect additive and dominant QTLs in early developmental stages. Floral transition is probably one critical stage for heterosis formation, in which epistatic QTLs are activated by paternal contributions of alleles that counteract the recessive, deleterious maternal alleles. These deleterious alleles, while rare, epistatically repress other favorable QTLs. We demonstrate this with one example, showing that Brachytic2 represses the Ubiquitin3 locus in the maternal lines; in hybrids, the paternal allele alleviates this repression, which in turn recovers the height of the plant and enhances the weight of the ear. Finally, we propose a molecular design breeding by manipulating key genes underlying the transition from vegetative-to-reproductive growth.

CONCLUSION

The new population design is used to dissect the genetic basis of heterosis which accelerates maize molecular design breeding by diminishing deleterious epistatic interactions.

摘要

背景

在玉米杂交种培育中,通过建立具有重排遗传变异的互补亲本系群体来实现杂种优势的优异表现。为了全面揭示杂种优势的遗传学基础,我们设计了一种新的多连锁 F1 群体,该群体由 1428 条母系与 30 个来自不同遗传背景的优良测验种杂交产生,共包含 42840 个 F1 玉米杂种,并对其农艺性状进行表型分析。

结果

我们发现,虽然产量杂种优势与广泛存在的、微效的上位性 QTL 相关,但它可能是由少数主要效应的加性和显性 QTL 在早期发育阶段产生的。花发育转变可能是杂种优势形成的一个关键阶段,在此阶段,上位性 QTL 被来自父本的等位基因激活,这些等位基因对抗母本的隐性、有害等位基因。这些有害等位基因虽然稀有,但在遗传上抑制了其他有利的 QTL。我们通过一个例子证明了这一点,表明短节基因 2 抑制母本系中的泛素 3 基因;在杂种中,父本等位基因减轻了这种抑制作用,从而恢复了植物的高度并增加了穗的重量。最后,我们提出了一种通过操纵控制向生殖生长转变的关键基因来进行分子设计育种的方法,从而减少有害的上位性相互作用,加速玉米的分子设计育种。

结论

新的群体设计用于解析杂种优势的遗传基础,从而通过减少有害的上位性相互作用来加速玉米的分子设计育种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5505/8108465/bb24e26d1a58/13059_2021_2370_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验