Suppr超能文献

将预测模型与政府法规联系起来,以支持 COVID-19 大流行期间医院的运营。

Linking prediction models to government ordinances to support hospital operations during the COVID-19 pandemic.

机构信息

Department of Clinical Care Transformation, University of Miami Hospital and Clinics, Miami, Florida, USA

Department of Clinical Care Transformation, University of Miami Hospital and Clinics, Miami, Florida, USA.

出版信息

BMJ Health Care Inform. 2021 May;28(1). doi: 10.1136/bmjhci-2020-100248.

Abstract

OBJECTIVES

We describe a hospital's implementation of predictive models to optimise emergency response to the COVID-19 pandemic.

METHODS

We were tasked to construct and evaluate COVID-19 driven predictive models to identify possible planning and resource utilisation scenarios. We used system dynamics to derive a series of chain susceptible, infected and recovered (SIR) models. We then built a discrete event simulation using the system dynamics output and bootstrapped electronic medical record data to approximate the weekly effect of tuning surgical volume on hospital census. We evaluated performance via a model fit assessment and cross-model comparison.

RESULTS

We outlined the design and implementation of predictive models to support management decision making around areas impacted by COVID-19. The fit assessments indicated the models were most useful after 30 days from onset of local cases. We found our subreports were most accurate up to 7 days after model run.DiscusssionOur model allowed us to shape our health system's executive policy response to implement a 'hospital within a hospital'-one for patients with COVID-19 within a hospital able to care for the regular non-COVID-19 population. The surgical scheduleis modified according to models that predict the number of new patients withCovid-19 who require admission. This enabled our hospital to coordinateresources to continue to support the community at large. Challenges includedthe need to frequently adjust or create new models to meet rapidly evolvingrequirements, communication, and adoption, and to coordinate the needs ofmultiple stakeholders. The model we created can be adapted to other health systems,provide a mechanism to predict local peaks in cases and inform hospitalleadership regarding bed allocation, surgical volumes, staffing, and suppliesone for COVID-19 patients within a hospital able to care for the regularnon-COVID-19 population.

CONCLUSION

Predictive models are essential tools in supporting decision making when coordinating clinical operations during a pandemic.

摘要

目的

我们描述了一家医院实施预测模型以优化对 COVID-19 大流行的应急响应的情况。

方法

我们的任务是构建和评估 COVID-19 驱动的预测模型,以确定可能的规划和资源利用场景。我们使用系统动力学推导出一系列链式易感、感染和恢复(SIR)模型。然后,我们使用系统动力学的输出构建了一个离散事件模拟,并使用.bootstrap 电子病历数据来近似调整手术量对医院入住率的每周影响。我们通过模型拟合评估和跨模型比较来评估性能。

结果

我们概述了支持管理决策的预测模型的设计和实施,这些决策涉及受 COVID-19 影响的领域。拟合评估表明,这些模型在当地病例出现后 30 天最有用。我们发现我们的子报告在模型运行后 7 天内最准确。

讨论

我们的模型使我们能够塑造我们的卫生系统的执行政策反应,以实施“医院内的医院”-一个用于 COVID-19 患者的医院,能够照顾常规的非 COVID-19 人群。手术时间表根据预测需要住院的新 COVID-19 患者数量的模型进行修改。这使我们的医院能够协调资源,继续为广大社区提供支持。挑战包括需要频繁调整或创建新模型以满足快速变化的需求、沟通和采用,以及协调多个利益相关者的需求。我们创建的模型可以适应其他卫生系统,提供预测当地病例高峰期的机制,并告知医院领导层床位分配、手术量、人员配备和供应情况,以满足 COVID-19 患者和常规非 COVID-19 患者的需求。

结论

预测模型是协调大流行期间临床运营时支持决策的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad2/8111872/94b055d4edfe/bmjhci-2020-100248f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验