Suppr超能文献

一种用于高质量地理空间插值的增强型双重反距离加权法。

An enhanced dual IDW method for high-quality geospatial interpolation.

作者信息

Li Zhanglin

机构信息

Computer School, China University of Geosciences, Wuhan, 430074, China.

Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, 430074, China.

出版信息

Sci Rep. 2021 May 10;11(1):9903. doi: 10.1038/s41598-021-89172-w.

Abstract

Many geoscience problems involve predicting attributes of interest at un-sampled locations. Inverse distance weighting (IDW) is a standard solution to such problems. However, IDW is generally not able to produce favorable results in the presence of clustered data, which is commonly used in the geospatial data process. To address this concern, this paper presents a novel interpolation approach (DIDW) that integrates data-to-data correlation with the conventional IDW and reformulates it within the geostatistical framework considering locally varying exponents. Traditional IDW, DIDW, and ordinary kriging are employed to evaluate the interpolation performance of the proposed method. This evaluation is based on a case study using the public Walker Lake dataset, and the associated interpolations are performed in various contexts, such as different sample data sizes and variogram parameters. The results demonstrate that DIDW with locally varying exponents stably produces more accurate and reliable estimates than the conventional IDW and DIDW. Besides, it yields more robust estimates than ordinary kriging in the face of varying variogram parameters. Thus, the proposed method can be applied as a preferred spatial interpolation method for most applications regarding its stability and accuracy.

摘要

许多地球科学问题都涉及预测未采样位置处的感兴趣属性。反距离加权法(IDW)是解决此类问题的一种标准方法。然而,在地理空间数据处理中常用的聚类数据存在的情况下,IDW通常无法产生理想的结果。为了解决这一问题,本文提出了一种新颖的插值方法(DIDW),该方法将数据与数据之间的相关性与传统的IDW相结合,并在考虑局部变化指数的地质统计框架内对其进行重新表述。采用传统的IDW、DIDW和普通克里金法来评估所提方法的插值性能。该评估基于一个使用公共沃克湖数据集的案例研究,并且在不同的背景下进行相关插值,例如不同的样本数据大小和变异函数参数。结果表明,具有局部变化指数的DIDW比传统的IDW和DIDW能更稳定地产生更准确可靠的估计值。此外,面对变化的变异函数参数,它比普通克里金法能产生更稳健的估计值。因此,就其稳定性和准确性而言,所提方法可作为大多数应用首选的空间插值方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1444/8110750/40dac9e1660a/41598_2021_89172_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验