Suppr超能文献

三维微图案防止早期细菌黏附并能消除定植。

Three-Dimensional Micropatterning Deters Early Bacterial Adherence and Can Eliminate Colonization.

机构信息

Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.

Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia.

出版信息

ACS Appl Mater Interfaces. 2021 May 26;13(20):23339-23351. doi: 10.1021/acsami.1c01902. Epub 2021 May 11.

Abstract

Developing strategies to prevent bacterial infections that do not rely on the use of drugs is regarded globally as an important means to stem the tide of antimicrobial resistance, as argued by the World Health Organization (WHO) (Mendelson, M.; Matsoso, M. P. The World Health Organization Global Action Plan for Antimicrobial Resistance. , (5), 325-325. DOI: 10.7196/SAMJ.9644). Given that many antimicrobial-resistant infections are caused by the bacterial colonization of indwelling medical devices such as catheters and ventilators, the use of microengineered surfaces to prevent the initial attachment of microbes to these devices is a promising solution. In this work, it is demonstrated that 3D engineered surfaces can inhibit the initial phases of surface colonization for , , and , representing the three most common catheter-associated urinary tract bacterial infections, identified by the WHO as urgent threats A variety of designs including 11 different topographies and configurations that exhibited random distributions, sharp protrusions, and/or curvilinear shapes with dimensions ranging between 500 nm and 2 μm were tested to better understand the initial stages of surface colonization and how to optimize the design of fabricated surfaces for improved inhibition. These topographies were fabricated in two configurations to obtain either a standard 2D cross section or a 3D engineered topography using a novel UV lithography process enabling cost-efficient high-throughput manufacturing. Evaluating both the number of adhered bacteria and microcolonies formed by all three bacterial pathogens on the different surfaces provides insight into the initial colonization phase of bacterial growth on the various surfaces. The results demonstrate that both initial attachment and subsequent colonization can be significantly reduced on concrete 3D engineered patterns when compared to flat substrates and standard 2D micropatterns. Thus, this technology has great potential to reduce the colonization of bacteria on surfaces in clinical settings without the need for chemical treatments that might enhance antimicrobial resistance.

摘要

制定不依赖于药物的策略来预防细菌感染被全球视为遏制抗微生物药物耐药性潮流的重要手段,世界卫生组织(WHO)(Mendelson,M.;Matsoso,M. P. 世界卫生组织抗微生物药物耐药性全球行动计划。 ,(5),325-325。DOI:10.7196/SAMJ.9644)指出。鉴于许多抗微生物药物耐药性感染是由留置医疗设备(如导管和呼吸机)的细菌定植引起的,因此使用微工程表面来防止微生物最初附着在这些设备上是一种很有前途的解决方案。在这项工作中,证明 3D 工程表面可以抑制 、 和 的表面定植的初始阶段,它们分别代表了世卫组织确定的三种最常见的导管相关尿路感染细菌感染,被列为紧急威胁。为了更好地了解表面定植的初始阶段以及如何优化制造表面的设计以实现更好的抑制效果,测试了各种设计,包括 11 种不同的形貌和配置,这些形貌具有随机分布、尖锐突起和/或曲线形状,尺寸范围在 500nm 至 2μm 之间。这些形貌以两种配置进行制造,以获得标准的 2D 横截面或使用新型紫外光刻工艺制造的 3D 工程形貌,这种工艺能够实现具有成本效益的高通量制造。评估三种细菌病原体在不同表面上的附着细菌数量和形成的微菌落,深入了解了细菌在各种表面上初始定植阶段的生长情况。结果表明,与平面基底和标准的 2D 微图案相比,3D 工程图案的初始附着和随后的定植都可以显著减少。因此,这项技术具有很大的潜力,可以减少临床环境中细菌在表面的定植,而无需使用可能增强抗微生物药物耐药性的化学处理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验