IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2003-2016. doi: 10.1109/TCBB.2021.3079216. Epub 2022 Aug 8.
Hepatocellular carcinoma (HCC) is a type of primary liver malignant tumor with a high recurrence rate and poor prognosis even undergoing resection or transplantation. Accurate discrimination of the histologic grades of HCC plays a critical role in the management and therapy of HCC patients. In this paper, we discuss a deep learning-based diagnostic model for HCC histologic grading with multimodal Magnetic Resonance Imaging (MRI) images to overcome the problem of limited well-annotated data and extract the discriminated fusion feature referring to the clinical diagnosis experience of radiologists. Accordingly, we propose a novel Multimodality-Contribution-Aware TripNet (MCAT) based on the metric learning and the attention-aware weighted multimodal fusion. The novelty of the method lies in the multimodality small-shot learning architecture designation and the multimodality adaptive weighted computing scheme. The comprehensive experiments are done on the clinic dataset with the well-annotation of lesion location by the professional radiologist. The experimental results show that our proposed MCAT is not only able to achieve acceptable quantitative measuring of HCC histologic grading based on the MRI sequences with small cases but also outperforms previous models in HCC histologic grading, reaching an accuracy of 84 percent, a sensitivity of 87 percent and precision of 89 percent.
肝细胞癌 (HCC) 是一种原发性肝恶性肿瘤,即使进行了切除或移植,其复发率和预后仍较差。准确区分 HCC 的组织学分级对于 HCC 患者的管理和治疗至关重要。在本文中,我们讨论了一种基于深度学习的 HCC 组织学分级诊断模型,该模型使用多模态磁共振成像 (MRI) 图像来克服标注数据有限的问题,并提取区分融合特征,参考放射科医生的临床诊断经验。因此,我们提出了一种基于度量学习和注意感知加权多模态融合的新模型 Multimodality-Contribution-Aware Triplet Network (MCAT)。该方法的新颖之处在于多模态小样本学习架构设计和多模态自适应加权计算方案。综合实验是在具有专业放射科医生对病变位置进行详细注释的临床数据集上进行的。实验结果表明,我们提出的 MCAT 不仅能够基于小病例的 MRI 序列实现对 HCC 组织学分级的可接受的定量测量,而且在 HCC 组织学分级方面优于以前的模型,达到了 84%的准确率、87%的灵敏度和 89%的精度。