文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于肝细胞癌分级的基于注意力引导深度监督网络的自适应多模态融合

Adaptive Multimodal Fusion With Attention Guided Deep Supervision Net for Grading Hepatocellular Carcinoma.

作者信息

Li Shangxuan, Xie Yanyan, Wang Guangyi, Zhang Lijuan, Zhou Wu

出版信息

IEEE J Biomed Health Inform. 2022 Aug;26(8):4123-4131. doi: 10.1109/JBHI.2022.3161466. Epub 2022 Aug 11.


DOI:10.1109/JBHI.2022.3161466
PMID:35344499
Abstract

Multimodal medical imaging plays a crucial role in the diagnosis and characterization of lesions. However, challenges remain in lesion characterization based on multimodal feature fusion. First, current fusion methods have not thoroughly studied the relative importance of characterization modals. In addition, multimodal feature fusion cannot provide the contribution of different modal information to inform critical decision-making. In this study, we propose an adaptive multimodal fusion method with an attention-guided deep supervision net for grading hepatocellular carcinoma (HCC). Specifically, our proposed framework comprises two modules: attention-based adaptive feature fusion and attention-guided deep supervision net. The former uses the attention mechanism at the feature fusion level to generate weights for adaptive feature concatenation and balances the importance of features among various modals. The latter uses the weight generated by the attention mechanism as the weight coefficient of each loss to balance the contribution of the corresponding modal to the total loss function. The experimental results of grading clinical HCC with contrast-enhanced MR demonstrated the effectiveness of the proposed method. A significant performance improvement was achieved compared with existing fusion methods. In addition, the weight coefficient of attention in multimodal fusion has demonstrated great significance in clinical interpretation.

摘要

多模态医学成像在病变的诊断和特征描述中起着至关重要的作用。然而,基于多模态特征融合的病变特征描述仍存在挑战。首先,当前的融合方法尚未深入研究特征描述模态的相对重要性。此外,多模态特征融合无法提供不同模态信息的贡献以指导关键决策。在本研究中,我们提出了一种用于肝细胞癌(HCC)分级的具有注意力引导深度监督网络的自适应多模态融合方法。具体而言,我们提出的框架包括两个模块:基于注意力的自适应特征融合和注意力引导深度监督网络。前者在特征融合层面使用注意力机制为自适应特征拼接生成权重,并平衡各模态之间特征的重要性。后者将注意力机制生成的权重作为每个损失的权重系数,以平衡相应模态对总损失函数的贡献。用对比增强磁共振成像对临床HCC进行分级的实验结果证明了所提方法的有效性。与现有融合方法相比,性能有显著提升。此外,多模态融合中注意力的权重系数在临床解释中显示出了重要意义。

相似文献

[1]
Adaptive Multimodal Fusion With Attention Guided Deep Supervision Net for Grading Hepatocellular Carcinoma.

IEEE J Biomed Health Inform. 2022-8

[2]
Attention guided discriminative feature learning and adaptive fusion for grading hepatocellular carcinoma with Contrast-enhanced MR.

Comput Med Imaging Graph. 2022-4

[3]
DLNLF-net: Denoised local and non-local deep features fusion network for malignancy characterization of hepatocellular carcinoma.

Comput Methods Programs Biomed. 2022-12

[4]
Grading of hepatocellular carcinoma based on diffusion weighted images with multiple b-values using convolutional neural networks.

Med Phys. 2019-7-20

[5]
A Multimodality-Contribution-Aware TripNet for Histologic Grading of Hepatocellular Carcinoma.

IEEE/ACM Trans Comput Biol Bioinform. 2022

[6]
Prediction model of early recurrence of multimodal hepatocellular carcinoma with tensor fusion.

Phys Med Biol. 2024-6-5

[7]
BAF-Net: bidirectional attention-aware fluid pyramid feature integrated multimodal fusion network for diagnosis and prognosis.

Phys Med Biol. 2024-4-29

[8]
Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images.

Comput Biol Med. 2019-2-4

[9]
Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.

Eur Radiol. 2019-5-15

[10]
Medical lesion segmentation by combining multimodal images with modality weighted UNet.

Med Phys. 2022-6

引用本文的文献

[1]
LGMMFusion: A LiDAR-guided multi-modal fusion framework for enhanced 3D object detection.

PLoS One. 2025-9-4

[2]
Automatic pain classification in older patients with hip fracture based on multimodal information fusion.

Sci Rep. 2025-7-1

[3]
Clinical Interpretability of Deep Learning for Predicting Microvascular Invasion in Hepatocellular Carcinoma by Using Attention Mechanism.

Bioengineering (Basel). 2023-8-9

[4]
Dung Beetle Optimization with Deep Feature Fusion Model for Lung Cancer Detection and Classification.

Cancers (Basel). 2023-8-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索