Suppr超能文献

基于 CT 成像的机器学习模型:预测胸腺瘤低危和高危人群的一种潜在方法:“手术方式选择的影响”。

CT imaging-based machine learning model: a potential modality for predicting low-risk and high-risk groups of thymoma: "Impact of surgical modality choice".

机构信息

Department of Thoracic Surgery, İbn-i Sina Hospital, Ankara University Faculty of Medicine, 06100, Sıhhiye, Ankara, Turkey.

Ankara University Medical Design Application and Research Center (MEDITAM), 06100, Sıhhiye, Ankara, Turkey.

出版信息

World J Surg Oncol. 2021 May 11;19(1):147. doi: 10.1186/s12957-021-02259-6.

Abstract

INTRODUCTION

Radiomics methods are used to analyze various medical images, including computed tomography (CT), magnetic resonance, and positron emission tomography to provide information regarding the diagnosis, patient outcome, tumor phenotype, and the gene-protein signatures of various diseases. In low-risk group, complete surgical resection is typically sufficient, whereas in high-risk thymoma, adjuvant therapy is usually required. Therefore, it is important to distinguish between both. This study evaluated the CT radiomics features of thymomas to discriminate between low- and high-risk thymoma groups.

MATERIALS AND METHODS

In total, 83 patients with thymoma were included in this study between 2004 and 2019. We used the Radcloud platform (Huiying Medical Technology Co., Ltd.) to manage the imaging and clinical data and perform the radiomics statistical analysis. The training and validation datasets were separated by a random method with a ratio of 2:8 and 502 random seeds. The histopathological diagnosis was noted from the pathology report.

RESULTS

Four machine-learning radiomics features were identified to differentiate a low-risk thymoma group from a high-risk thymoma group. The radiomics feature names were Energy, Zone Entropy, Long Run Low Gray Level Emphasis, and Large Dependence Low Gray Level Emphasis.

CONCLUSIONS

The results demonstrated that a machine-learning model and a multilayer perceptron classifier analysis can be used on CT images to predict low- and high-risk thymomas. This combination could be a useful preoperative method to determine the surgical approach for thymoma.

摘要

简介

放射组学方法用于分析各种医学图像,包括计算机断层扫描(CT)、磁共振和正电子发射断层扫描,以提供有关诊断、患者预后、肿瘤表型以及各种疾病的基因-蛋白特征的信息。在低危组中,通常只需完全手术切除即可,而在高危胸腺瘤中,通常需要辅助治疗。因此,区分两者非常重要。本研究评估了胸腺瘤的 CT 放射组学特征,以区分低危和高危胸腺瘤组。

材料和方法

本研究共纳入 2004 年至 2019 年间的 83 例胸腺瘤患者。我们使用 Radcloud 平台(汇影医疗科技有限公司)管理成像和临床数据,并进行放射组学统计分析。训练和验证数据集通过随机方法以 2:8 的比例分离,并使用 502 个随机种子。组织病理学诊断来源于病理报告。

结果

确定了 4 个机器学习放射组学特征,可区分低危胸腺瘤组和高危胸腺瘤组。放射组学特征的名称为能量、区域熵、长行程低灰度强调和大依赖性低灰度强调。

结论

结果表明,机器学习模型和多层感知机分类器分析可用于 CT 图像预测低危和高危胸腺瘤。这种组合可能是一种有用的术前方法,可确定胸腺瘤的手术方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f4d/8114494/a77bb7aed6d1/12957_2021_2259_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验