Feng Wenfeng, Lin Runlong, Zhao Wenzhe, Cai Haifeng, Li Jingwu, Liu Yongliang, Cao Lixiu
Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
Department of Nuclear Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
Front Oncol. 2025 Jul 21;15:1590710. doi: 10.3389/fonc.2025.1590710. eCollection 2025.
To develop and validate a logistic regression (LR) model to improve the diagnostic performance of chest CT in distinguishing small (≤3 cm in long diameter on CT) thymomas from other asymptomatic small anterior mediastinal nodules (SAMNs).
A total of 231 patients (94 thymomas and 137 other SAMNs) with surgically resected asymptomatic SAMNs underwenting plain CT and biphasic enhanced CT from January 2013 to December 2023 were included and randomly allocated into training and internal testing sets at a 7:3 ratio. Clinical and CT features were analyzed, and a predictive model was developed based on independent risk features for small thymomas using multivariate LR in the training set. Receiver operating characteristic (ROC) curves and decision curve analysis (DCA) were used to compare the performance of the model and individual risk factors in the internal testing set. An additional prospective testing set (10 thymomas and 13 other SAMNs) was collected from the same institution between 2023 and 2024. The model's performance was evaluated by area under the curve (AUC) and compared with the results of three radiologists using the DeLong test.
The LR model incorporating four CT independent risk features (lesion location, attenuation pattern, CT values in the venous phase [CTV], and enhancement degree) achieved an AUC of 0.887 for small thymomas prediction. This performance was superior to CTV alone (AUC = 0.849, P = 0.118) and significantly higher than other individual risk factors in the internal testing set (P < 0.05). DCA confirmed the model's enhanced clinical utility across most threshold probabilities. In the prospective test set, the LR showed an AUC of 0.908 (95% CI: 0.765-1.00), comparable to the senior radiologist's performance (AUC = 0.912 [95% CI: 0.765-1.00], P = 0.961), higher than the intermediate radiologist's performance (AUC = 0.762 [95% CI: 0.554-0.969], P = 0.094), and significantly better than the junior radiologist's performance (AUC = 0.700 [95% CI: 0.463-0.937], P = 0.044).
The CT-based LR model demonstrated well diagnostic performance comparable to that of senior radiologists in differentiating small thymomas from other asymptomatic SAMNs. CTV played a leading role in the model.
开发并验证一种逻辑回归(LR)模型,以提高胸部CT在鉴别小(CT上长径≤3 cm)胸腺瘤与其他无症状前纵隔小结节(SAMNs)方面的诊断性能。
纳入2013年1月至2023年12月期间共231例接受手术切除的无症状SAMNs患者(94例胸腺瘤和137例其他SAMNs),这些患者均接受了平扫CT和双期增强CT检查,并以7:3的比例随机分为训练集和内部测试集。分析临床和CT特征,并在训练集中使用多变量LR基于小胸腺瘤的独立风险特征建立预测模型。使用受试者操作特征(ROC)曲线和决策曲线分析(DCA)来比较模型和个体风险因素在内部测试集中的性能。2023年至2024年期间从同一机构收集了一个额外的前瞻性测试集(10例胸腺瘤和13例其他SAMNs)。通过曲线下面积(AUC)评估模型的性能,并使用DeLong检验与三位放射科医生的结果进行比较。
包含四个CT独立风险特征(病变位置、衰减模式、静脉期CT值[CTV]和强化程度)的LR模型在预测小胸腺瘤方面的AUC为0.887。该性能优于单独的CTV(AUC = 0.849,P = 0.118),且在内部测试集中显著高于其他个体风险因素(P < 0.05)。DCA证实该模型在大多数阈值概率下具有更高的临床实用性。在前瞻性测试集中,LR的AUC为0.908(95%CI:0.76-1.00),与高级放射科医生的表现相当(AUC = 0.912 [95%CI:0.765-1.00],P = 0.961),高于中级放射科医生的表现(AUC = 0.762 [95%CI:(0.554-0.969),P = 0.094],且显著优于初级放射科医生的表现(AUC = 0.700 [95%CI:0.463-0.937],P = 0.044)。
基于CT的LR模型在区分小胸腺瘤与其他无症状SAMNs方面显示出与高级放射科医生相当的良好诊断性能。CTV在模型中起主导作用。