Suppr超能文献

基于肿瘤周围CT影像组学和语义特征的胸腺上皮肿瘤风险分层

Risk stratification of thymic epithelial tumors based on peritumor CT radiomics and semantic features.

作者信息

Zhang Lin, Xu Zhihan, Feng Yan, Pan Zhijie, Li Qinyao, Wang Ai, Hu Yanfei, Xie Xueqian

机构信息

Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Siemens Healthineers Ltd., Shanghai, China.

出版信息

Insights Imaging. 2024 Oct 22;15(1):253. doi: 10.1186/s13244-024-01798-2.

Abstract

OBJECTIVES

To develop and validate nomograms combining radiomics and semantic features to identify the invasiveness and histopathological risk stratification of thymic epithelial tumors (TET) using contrast-enhanced CT.

METHODS

This retrospective multi-center study included 224 consecutive cases. For each case, 6764 intratumor and peritumor radiomics features and 31 semantic features were collected. Multi-feature selections and decision tree models were performed on radiomics features and semantic features separately to select the most important features for Masaoka-Koga staging and WHO classification. The selected features were then combined to create nomograms for the two systems. The performance of the radiomics model, semantic model, and combined model was evaluated using the area under the receiver operating characteristic curves (AUCs).

RESULTS

One hundred eighty-seven cases (56.5 years ± 12.3, 101 men) were included, with 62 cases as the external test set. For Masaoka-Koga staging, the combined model, which incorporated five peritumor radiomics features and four semantic features, showed an AUC of 0.958 (95% CI: 0.912-1.000) in distinguishing between early-stage (stage I/II) and advanced-stage (III/IV) TET in the external test set. For WHO classification, the combined model incorporating five peritumor radiomics features and two semantic features showed an AUC of 0.857 (0.760-0.955) in differentiating low-risk (type A/AB/B1) and high-risk (B2/B3/C) TET. The combined models showed the most effective predictive performance, while the semantic models exhibited comparable performance to the radiomics models in both systems (p > 0.05).

CONCLUSION

The nomograms combining peritumor radiomics features and semantic features could help in increasing the accuracy of grading invasiveness and risk stratification of TET.

CRITICAL RELEVANCE STATEMENT

Peripheral invasion and histopathological type are major determinants of treatment and prognosis of TET. The integration of peritumoral radiomics features and semantic features into nomograms may enhance the accuracy of grading invasiveness and risk stratification of TET.

KEY POINTS

Peritumor region of TET may suggest histopathological and invasive risk. Peritumor radiomic and semantic features allow classification by Masaoka-Koga staging (AUC: 0.958). Peritumor radiomic and semantic features enable the classification of histopathological risk (AUC: 0.857).

摘要

目的

开发并验证结合放射组学和语义特征的列线图,以利用增强CT识别胸腺上皮肿瘤(TET)的侵袭性和组织病理学风险分层。

方法

这项回顾性多中心研究纳入了224例连续病例。对每个病例,收集了6764个肿瘤内和肿瘤周围的放射组学特征以及31个语义特征。分别对放射组学特征和语义特征进行多特征选择和决策树模型,以选择对Masaoka-Koga分期和世界卫生组织(WHO)分类最重要的特征。然后将所选特征结合起来,为这两个系统创建列线图。使用受试者操作特征曲线下面积(AUC)评估放射组学模型、语义模型和联合模型的性能。

结果

纳入187例患者(56.5岁±12.3岁,男性101例),其中62例作为外部测试集。对于Masaoka-Koga分期,结合5个肿瘤周围放射组学特征和4个语义特征的联合模型在外部测试集中区分早期(I/II期)和晚期(III/IV期)TET时,AUC为0.958(95%CI:0.912 - 1.000)。对于WHO分类,结合5个肿瘤周围放射组学特征和2个语义特征的联合模型在区分低风险(A/AB/B1型)和高风险(B2/B3/C型)TET时,AUC为0.857(0.760 - 0.955)。联合模型显示出最有效的预测性能,而在两个系统中语义模型与放射组学模型表现相当(p>0.05)。

结论

结合肿瘤周围放射组学特征和语义特征的列线图有助于提高TET侵袭性分级和风险分层的准确性。

关键相关性声明

周围侵犯和组织病理学类型是TET治疗和预后的主要决定因素。将肿瘤周围放射组学特征和语义特征整合到列线图中可能会提高TET侵袭性分级和风险分层的准确性。

要点

TET的肿瘤周围区域可能提示组织病理学和侵袭风险。肿瘤周围放射组学和语义特征可按Masaoka-Koga分期进行分类(AUC:0.958)。肿瘤周围放射组学和语义特征可对组织病理学风险进行分类(AUC:0.857)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0431/11496418/1f6e885234d7/13244_2024_1798_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验