Suppr超能文献

基于机器学习的影像组学分析在增强CT预测胸腺上皮肿瘤病理亚型及世界卫生组织分期中的应用:一项多中心研究

Machine learning-based radiomics analysis in enhancing CT for predicting pathological subtypes and WHO staging of thymic epithelial tumors: a multicenter study.

作者信息

Zhang Ruoxu, Zhang Xueyi, Dou Zheng, Lin Jiaxi, Qin Songbing, Xu Chao, Chen Yongbing, Zhu Jinzhou, Wang Jianping

机构信息

Department of Radiation Oncology, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, China.

Department of General Surgery, Changshu Hospital Affiliated to Soochow University Suzhou, Jiangsu, China.

出版信息

Am J Cancer Res. 2025 May 25;15(5):2375-2396. doi: 10.62347/STUZ8659. eCollection 2025.

Abstract

This study is aimed to develop predictive models for classifying thymic epithelial tumor (TET) histological subtypes (A/AB/B1, B2/B3, C) and WHO stages (I-IV) using radiomics features derived from contrast-enhanced CT scans. These models were validated on multicenter external datasets to improve preoperative diagnosis and guide treatment decisions. A total of 257 patients diagnosed with TET between January 2013 and April 2024 were retrospectively analyzed, with 181 cases from the First Affiliated Hospital of Soochow University served as the training cohort and 76 cases from the Second Affiliated Hospital used as an external test set. All patients underwent preoperative enhanced CT scans. After manual segmentation of the volume of interest (VOI), 1,038 radiomic features were extracted. Feature selection was performed using PCA and LASSO methods. Three models (clinical semantic, radiomics, and a fusion model combining both) were built using random forest algorithms. The fusion model achieved the highest performance in the external test set, with an accuracy of 0.908 and F1 score of 0.896 for histological subtype classification, and an accuracy of 0.803 and F1 score of 0.833 for WHO staging. The radiomics model shows slightly lower performance, while the clinical semantic model performs the weakest. Our findings suggest that machine learning models integrating radiomics and clinical features can effectively predict TET subtypes and stages, offering a non-invasive tool for accurate preoperative assessment with strong generalization ability.

摘要

本研究旨在利用对比增强CT扫描获得的影像组学特征,开发用于分类胸腺上皮肿瘤(TET)组织学亚型(A/AB/B1、B2/B3、C)和WHO分期(I-IV期)的预测模型。这些模型在多中心外部数据集上进行了验证,以改善术前诊断并指导治疗决策。回顾性分析了2013年1月至2024年4月期间诊断为TET的257例患者,其中苏州大学附属第一医院的181例作为训练队列,附属第二医院的76例作为外部测试集。所有患者均接受了术前增强CT扫描。在对感兴趣体积(VOI)进行手动分割后,提取了1038个影像组学特征。使用主成分分析(PCA)和套索(LASSO)方法进行特征选择。使用随机森林算法构建了三个模型(临床语义模型、影像组学模型以及两者结合的融合模型)。融合模型在外部测试集中表现最佳,组织学亚型分类的准确率为0.908,F1分数为0.896;WHO分期的准确率为0.803,F1分数为0.833。影像组学模型的表现略低,而临床语义模型表现最差。我们的研究结果表明,整合影像组学和临床特征的机器学习模型可以有效预测TET的亚型和分期,为准确的术前评估提供一种具有强泛化能力的非侵入性工具。

相似文献

本文引用的文献

7
Chinese expert consensus on the diagnosis and treatment of thymic epithelial tumors.中国胸腺瘤专家共识(2023 版)
Thorac Cancer. 2023 Apr;14(12):1102-1117. doi: 10.1111/1759-7714.14847. Epub 2023 Mar 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验