Hao Yu-Chen, Chen Li-Wei, Li Jiani, Guo Yu, Su Xin, Shu Miao, Zhang Qinghua, Gao Wen-Yan, Li Siwu, Yu Zi-Long, Gu Lin, Feng Xiao, Yin An-Xiang, Si Rui, Zhang Ya-Wen, Wang Bo, Yan Chun-Hua
Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.
Nat Commun. 2021 May 11;12(1):2682. doi: 10.1038/s41467-021-22991-7.
The demand for sustainable energy has motivated the development of artificial photosynthesis. Yet the catalyst and reaction interface designs for directly fixing permanent gases (e.g. CO, O, N) into liquid fuels are still challenged by slow mass transfer and sluggish catalytic kinetics at the gas-liquid-solid boundary. Here, we report that gas-permeable metal-organic framework (MOF) membranes can modify the electronic structures and catalytic properties of metal single-atoms (SAs) to promote the diffusion, activation, and reduction of gas molecules (e.g. CO O) and produce liquid fuels under visible light and mild conditions. With Ir SAs as active centers, the defect-engineered MOF (e.g. activated NH-UiO-66) particles can reduce CO to HCOOH with an apparent quantum efficiency (AQE) of 2.51% at 420 nm on the gas-liquid-solid reaction interface. With promoted gas diffusion at the porous gas-solid interfaces, the gas-permeable SA/MOF membranes can directly convert humid CO gas into HCOOH with a near-unity selectivity and a significantly increased AQE of 15.76% at 420 nm. A similar strategy can be applied to the photocatalytic O-to-HO conversions, suggesting the wide applicability of our catalyst and reaction interface designs.
对可持续能源的需求推动了人工光合作用的发展。然而,将永久气体(如CO、O、N)直接固定为液体燃料的催化剂和反应界面设计,仍面临着气-液-固边界处传质缓慢和催化动力学迟缓的挑战。在此,我们报道了透气金属有机框架(MOF)膜可以改变金属单原子(SAs)的电子结构和催化性能,以促进气体分子(如CO、O)的扩散、活化和还原,并在可见光和温和条件下生产液体燃料。以Ir SAs作为活性中心,缺陷工程化的MOF(如活化的NH-UiO-66)颗粒在气-液-固反应界面上,在420nm处可将CO还原为HCOOH,表观量子效率(AQE)为2.51%。在多孔气-固界面处促进了气体扩散,透气的SA/MOF膜可以将近乎单一的选择性,将潮湿的CO气体直接转化为HCOOH,并且在420nm处AQE显著提高至15.76%。类似的策略可应用于光催化O到H₂O的转化,这表明我们的催化剂和反应界面设计具有广泛的适用性。