Chen Li-Wei, Hao Yu-Chen, Guo Yu, Zhang Qinghua, Li Jiani, Gao Wen-Yan, Ren Lantian, Su Xin, Hu Linyu, Zhang Nan, Li Siwu, Feng Xiao, Gu Lin, Zhang Ya-Wen, Yin An-Xiang, Wang Bo
Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
J Am Chem Soc. 2021 Apr 21;143(15):5727-5736. doi: 10.1021/jacs.0c13342. Epub 2021 Apr 13.
Photocatalytic nitrogen fixation reaction can harvest the solar energy to convert the abundant but inert N into NH. Here, utilizing metal-organic framework (MOF) membranes as the ideal assembly of nanoreactors to disperse and confine gold nanoparticles (AuNPs), we realize the direct plasmonic photocatalytic nitrogen fixation under ambient conditions. Upon visible irradiation, the hot electrons generated on the AuNPs can be directly injected into the N molecules adsorbed on Au surfaces. Such N molecules can be additionally activated by the strong but evanescently localized surface plasmon resonance field, resulting in a supralinear intensity dependence of the ammonia evolution rate with much higher apparent quantum efficiency and lower apparent activation energy under stronger irradiation. Moreover, the gas-permeable Au@MOF membranes, consisting of numerous interconnected nanoreactors, can ensure the dispersity and stability of AuNPs, further facilitate the mass transfer of N molecules and (hydrated) protons, and boost the plasmonic photocatalytic reactions at the designed gas-membrane-solution interface. As a result, an ammonia evolution rate of 18.9 mmol g h was achieved under visible light (>400 nm, 100 mW cm) with an apparent quantum efficiency of 1.54% at 520 nm.
光催化固氮反应能够利用太阳能将丰富但惰性的氮气转化为氨。在此,我们利用金属有机框架(MOF)膜作为纳米反应器的理想组装体来分散和限制金纳米颗粒(AuNP),从而在环境条件下实现了直接的等离子体光催化固氮。在可见光照射下,AuNP上产生的热电子可直接注入吸附在Au表面的氮分子中。这种氮分子可通过强但呈倏逝性局域化的表面等离子体共振场进一步活化,从而在更强照射下导致氨析出速率呈现超线性强度依赖性,具有更高的表观量子效率和更低的表观活化能。此外,由众多相互连接的纳米反应器组成的透气Au@MOF膜能够确保AuNP的分散性和稳定性,进一步促进氮分子和(水合)质子的传质,并在设计的气 - 膜 - 溶液界面处推动等离子体光催化反应。结果,在可见光(>400 nm,100 mW/cm²)照射下,520 nm处的表观量子效率为1.54%时,氨析出速率达到了18.9 mmol g⁻¹ h⁻¹。