Suppr超能文献

加拿大带有预防性过敏原标签食品中花生和榛子作为过敏原的出现情况。

Peanut and hazelnut occurrence as allergens in foodstuffs with precautionary allergen labeling in Canada.

作者信息

Manny Emilie, La Vieille Sébastien, Barrere Virginie, Théolier Jérémie, Godefroy Samuel Benrejeb

机构信息

Food Risk Analysis and Regulatory Excellence Platform (PARERA), Institute of Nutrition and Functional Foods and Department of Food Science, Université Laval, Québec, Canada.

Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, Canada.

出版信息

NPJ Sci Food. 2021 May 11;5(1):11. doi: 10.1038/s41538-021-00093-4.

Abstract

Precautionary allergen labeling (PAL) is widely used by food industries. Occurrence studies revealed that few analyzed products contained the allergen(s) present in the statement, but little is known in Canada. To improve manufacturing practices and better manage allergen cross-contamination, occurrence data is needed to determine the exposure of allergic individuals eating those products. Samples were analyzed for peanuts (n = 871) and hazelnuts (n = 863) using ELISA methods. Within samples analyzed for peanuts, 72% had a PAL (n = 628), 1% had peanuts as a minor ingredient (n = 9) and 27% were claimed "peanut-free" (n = 234). Most hazelnut samples had a PAL for tree nuts/hazelnuts (94%; n = 807) with 6% claimed "nut-free" (n = 56). Peanuts and hazelnuts were found in 4% (0.6-28.1 ppm) and 9% (0.4-2167 ppm) of all samples, respectively. Chocolates were mostly impacted; they should be treated apart from other foods and used in risk assessments scenarios to improve manufacturing practices, reducing unnecessary PAL use.

摘要

预防性过敏原标签(PAL)在食品行业中被广泛使用。发生率研究表明,很少有分析过的产品含有声明中提及的过敏原,但在加拿大对此了解甚少。为了改进生产工艺并更好地管理过敏原交叉污染,需要发生率数据来确定食用这些产品的过敏个体的暴露情况。使用酶联免疫吸附测定(ELISA)方法对花生(n = 871)和榛子(n = 863)样本进行了分析。在分析的花生样本中,72%有预防性过敏原标签(n = 628),1%含有少量花生成分(n = 9),27%宣称“无花生”(n = 234)。大多数榛子样本有坚果/榛子的预防性过敏原标签(94%;n = 807),6%宣称“无坚果”(n = 56)。在所有样本中,分别有4%(0.6 - 28.1 ppm)和9%(0.4 - 2167 ppm)检测到花生和榛子。巧克力受影响最大;它们应与其他食品分开处理,并用于风险评估场景中,以改进生产工艺,减少不必要的预防性过敏原标签使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03a5/8113233/002e64a3405f/41538_2021_93_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验