Suppr超能文献

临床变量的神经网络分析预测COVID-19患者的强化护理:一项回顾性研究。

Neural network analysis of clinical variables predicts escalated care in COVID-19 patients: a retrospective study.

作者信息

Lu Joyce Q, Musheyev Benjamin, Peng Qi, Duong Tim Q

机构信息

Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.

出版信息

PeerJ. 2021 Apr 19;9:e11205. doi: 10.7717/peerj.11205. eCollection 2021.

Abstract

This study sought to identify the most important clinical variables that can be used to determine which COVID-19 patients hospitalized in the general floor will need escalated care early on using neural networks (NNs). Analysis was performed on hospitalized COVID-19 patients between 7 February 2020 and 4 May 2020 in Stony Brook Hospital. Demographics, comorbidities, laboratory tests, vital signs and blood gases were collected. We compared those data obtained at the time in emergency department and the time of intensive care unit (ICU) upgrade of: (i) COVID-19 patients admitted to the general floor ( = 1203) vs. those directly admitted to ICU ( = 104), and (ii) patients not upgraded to ICU ( = 979) vs. those upgraded to the ICU ( = 224) from the general floor. A NN algorithm was used to predict ICU admission, with 80% training and 20% testing. Prediction performance used area under the curve (AUC) of the receiver operating characteristic analysis (ROC). We found that C-reactive protein, lactate dehydrogenase, creatinine, white-blood cell count, D-dimer and lymphocyte count showed temporal divergence between COVID-19 patients hospitalized in the general floor that were upgraded to ICU compared to those that were not. The NN predictive model essentially ranked the same laboratory variables to be important predictors of needing ICU care. The AUC for predicting ICU admission was 0.782 ± 0.013 for the test dataset. Adding vital sign and blood-gas data improved AUC (0.822 ± 0.018). This work could help frontline physicians to anticipate downstream ICU need to more effectively allocate healthcare resources.

摘要

本研究旨在确定最重要的临床变量,这些变量可用于利用神经网络(NN)来判断哪些在普通病房住院的新冠肺炎患者早期需要升级护理。对2020年2月7日至2020年5月4日在石溪医院住院的新冠肺炎患者进行了分析。收集了人口统计学、合并症、实验室检查、生命体征和血气数据。我们比较了在急诊科时以及重症监护病房(ICU)升级时获得的以下数据:(i)入住普通病房的新冠肺炎患者(n = 1203)与直接入住ICU的患者(n = 104),以及(ii)未升级到ICU的患者(n = 979)与从普通病房升级到ICU的患者(n = 224)。使用NN算法预测ICU入院情况,其中80%用于训练,20%用于测试。预测性能采用接受者操作特征分析(ROC)的曲线下面积(AUC)。我们发现,与未升级到ICU的患者相比,升级到ICU的普通病房住院新冠肺炎患者的C反应蛋白、乳酸脱氢酶、肌酐、白细胞计数、D-二聚体和淋巴细胞计数存在时间差异。NN预测模型基本上将相同的实验室变量列为需要ICU护理的重要预测因素。测试数据集预测ICU入院的AUC为0.782±0.013。添加生命体征和血气数据可提高AUC(0.822±0.018)。这项工作有助于一线医生预测下游ICU需求,以便更有效地分配医疗资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验