Suppr超能文献

高效且温和地将分子递送到具有不同弹性的细胞内——渐进式机械穿孔。

Efficient and gentle delivery of molecules into cells with different elasticity Progressive Mechanoporation.

机构信息

Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.

Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.

出版信息

Lab Chip. 2021 Jun 15;21(12):2437-2452. doi: 10.1039/d0lc01224f.

Abstract

Intracellular delivery of cargo molecules such as membrane-impermeable proteins or drugs is crucial for cell treatment in biological and medical applications. Recently, microfluidic mechanoporation techniques have enabled transfection of previously inaccessible cells. These techniques create transient pores in the cell membrane by shear-induced or constriction contact-based rapid cell deformation. However, cells deform and recover differently from a given extent of shear stress or compression and it is unclear how the underlying mechanical properties affect the delivery efficiency of molecules into cells. In this study, we identify cell elasticity as a key mechanical determinant of delivery efficiency leading to the development of "progressive mechanoporation" (PM), a novel mechanoporation method that improves delivery efficiency into cells of different elasticity. PM is based on a multistage cell deformation, through a combination of hydrodynamic forces that pre-deform cells followed by their contact-based compression inside a PDMS-based device controlled by a pressure-based microfluidic controller. PM allows processing of small sample volumes (about 20 μL) with high-throughput (>10 000 cells per s), while controlling both operating pressure and flow rate for a reliable and reproducible cell treatment. We find that uptake of molecules of different sizes is correlated with cell elasticity whereby delivery efficiency of small and big molecules is favoured in more compliant and stiffer cells, respectively. A possible explanation for this opposite trend is a different size, number and lifetime of opened pores. Our data demonstrates that PM reliably and reproducibly delivers impermeable cargo of the size of small molecule inhibitors such as 4 kDa FITC-dextran with >90% efficiency into cells of different mechanical properties without affecting their viability and proliferation rates. Importantly, also much larger cargos such as a >190 kDa Cas9 protein-sgRNA complex are efficiently delivered high-lighting the biological, biomedical and clinical applicability of our findings.

摘要

细胞内递货运送分子,如膜不可渗透的蛋白质或药物,对于生物和医学应用中的细胞治疗至关重要。最近,微流控机械穿孔技术已经能够转染以前无法进入的细胞。这些技术通过剪切诱导或基于收缩的快速细胞变形的接触来在细胞膜上产生瞬时孔。然而,细胞从给定的剪切应力或压缩程度变形和恢复的方式不同,并且不清楚潜在的机械性能如何影响分子进入细胞的递运效率。在这项研究中,我们确定细胞弹性是递运效率的关键机械决定因素,导致了“渐进式机械穿孔”(PM)的发展,这是一种改进不同弹性细胞的递运效率的新型机械穿孔方法。PM 基于细胞的多阶段变形,通过结合预先变形细胞的流体动力和基于 PDMS 的设备内的基于接触的压缩,该设备由基于压力的微流控控制器控制。PM 允许处理小样品体积(约 20 μL),具有高通量(>10000 个细胞/s),同时控制操作压力和流速以进行可靠和可重复的细胞处理。我们发现,不同大小的分子的摄取与细胞弹性相关,其中小分子抑制剂等大小的小和大分子的递运效率分别在更有弹性和更硬的细胞中更有利。这种相反趋势的一种可能解释是不同的孔的大小、数量和寿命。我们的数据表明,PM 能够可靠且可重复地递运不同机械性能细胞的大小不可渗透的货物,例如 4 kDa FITC-葡聚糖,其效率>90%,而不会影响其活力和增殖率。重要的是,即使是更大的货物,如>190 kDa 的 Cas9 蛋白-sgRNA 复合物,也能够高效递运,突出了我们研究结果的生物学、生物医学和临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/656d/8204113/ed5de36878cd/d0lc01224f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验