Suppr超能文献

通过协调声驱动的剪切力机械穿孔和电泳插入增强细胞内递送。

Enhanced intracellular delivery via coordinated acoustically driven shear mechanoporation and electrophoretic insertion.

机构信息

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.

OpenCell Technologies, Inc, St. Louis, MO, 63108, USA.

出版信息

Sci Rep. 2018 Feb 27;8(1):3727. doi: 10.1038/s41598-018-22042-0.

Abstract

Delivery of large and structurally complex target molecules into cells is vital to the emerging areas of cellular modification and molecular therapy. Inadequacy of prevailing in vivo (viral) and in vitro (liposomal) gene transfer methods for delivery of proteins and a growing diversity of synthetic nanomaterials has encouraged development of alternative physical approaches. Efficacy of injury/diffusion-based delivery via shear mechanoporation is largely insensitive to cell type and target molecule; however, enhanced flexibility is typically accompanied by reduced gene transfer effectiveness. We detail a method to improve transfection efficiency through coordinated mechanical disruption of the cell membrane and electrophoretic insertion of DNA to the cell interior. An array of micromachined nozzles focuses ultrasonic pressure waves, creating a high-shear environment that promotes transient pore formation in membranes of transmitted cells. Acoustic Shear Poration (ASP) allows passive cytoplasmic delivery of small to large nongene macromolecules into established and primary cells at greater than 75% efficiency. Addition of an electrophoretic action enables active transport of target DNA molecules to substantially augment transfection efficiency of passive mechanoporation/diffusive delivery without affecting viability. This two-stage poration/insertion method preserves the compelling flexibility of shear-based delivery, yet substantially enhances capabilities for active transport and transfection of plasmid DNA.

摘要

将大型和结构复杂的靶分子递送到细胞中对于细胞修饰和分子治疗这两个新兴领域至关重要。目前体内(病毒)和体外(脂质体)基因转移方法在递送达蛋白方面存在不足,而且合成纳米材料的种类越来越多,这促使人们开发替代的物理方法。基于损伤/扩散的剪切机械穿孔法的递送效果在很大程度上不受细胞类型和靶分子的影响;然而,增强的灵活性通常伴随着基因转移效率的降低。我们详细介绍了一种通过协调细胞膜的机械破坏和电泳将 DNA 插入细胞内部来提高转染效率的方法。一系列微加工喷嘴聚焦超声波压力波,在传输细胞的膜中产生促进瞬时孔形成的高剪切环境。声剪切穿孔 (ASP) 允许小到大的非基因大分子通过被动细胞质递送到已建立的和原代细胞中,效率超过 75%。外加电泳作用可使目标 DNA 分子主动转运,从而大大提高被动机械穿孔/扩散递送的转染效率,而不影响细胞活力。这种两阶段穿孔/插入方法保留了基于剪切的递送的引人注目的灵活性,但大大增强了主动转运和质粒 DNA 转染的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bccd/5829135/1cfcfad34f09/41598_2018_22042_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验