Suppr超能文献

一种与交并比(IoU)相关的系统方法:超越简化回归以实现更好的定位。

A Systematic IoU-Related Method: Beyond Simplified Regression for Better Localization.

作者信息

Peng Hanyang, Yu Shiqi

出版信息

IEEE Trans Image Process. 2021;30:5032-5044. doi: 10.1109/TIP.2021.3077144. Epub 2021 May 19.

Abstract

Four-variable-independent-regression localization losses, such as Smooth- l Loss, are used by default in modern detectors. Nevertheless, this kind of loss is oversimplified so that it is inconsistent with the final evaluation metric, intersection over union (IoU). Directly employing the standard IoU is also not infeasible, since the constant-zero plateau in the case of non-overlapping boxes and the non-zero gradient at the minimum may make it not trainable. Accordingly, we propose a systematic method to address these problems. Firstly, we propose a new metric, the extended IoU (EIoU), which is well-defined when two boxes are not overlapping and reduced to the standard IoU when overlapping. Secondly, we present the convexification technique (CT) to construct a loss on the basis of EIoU, which can guarantee the gradient at the minimum to be zero. Thirdly, we propose a steady optimization technique (SOT) to make the fractional EIoU loss approaching the minimum more steadily and smoothly. Fourthly, to fully exploit the capability of the EIoU based loss, we introduce an interrelated IoU-predicting head to further boost localization accuracy. With the proposed contributions, the new method incorporated into Faster R-CNN with ResNet50+FPN as the backbone yields 4.2 mAP gain on VOC2007 and 2.3 mAP gain on COCO2017 over the baseline Smooth- l Loss, at almost no training and inferencing computational cost. Specifically, the stricter the metric is, the more notable the gain is, improving 8.2 mAP on VOC2007 and 5.4 mAP on COCO2017 at metric AP .

摘要

现代目标检测器默认使用诸如平滑L1损失之类的四变量独立回归定位损失。然而,这种损失过于简单,以至于与最终评估指标交并比(IoU)不一致。直接使用标准IoU也不可行,因为在非重叠框的情况下存在常数零平台,并且在最小值处存在非零梯度,这可能使其不可训练。因此,我们提出了一种系统的方法来解决这些问题。首先,我们提出了一种新的指标,扩展IoU(EIoU),当两个框不重叠时它定义良好,当重叠时它简化为标准IoU。其次,我们提出了凸化技术(CT),以基于EIoU构建一种损失,这可以保证在最小值处的梯度为零。第三,我们提出了一种稳定优化技术(SOT),以使分数EIoU损失更稳定、更平滑地接近最小值。第四,为了充分利用基于EIoU的损失的能力,我们引入了一个相关的IoU预测头,以进一步提高定位精度。通过这些贡献,以ResNet50+FPN作为骨干网络并将新方法融入Faster R-CNN中,与基线平滑L1损失相比,在VOC2007上的平均精度均值(mAP)提高了4.2,在COCO2017上提高了2.3,几乎没有增加训练和推理的计算成本。具体而言,指标越严格,增益越显著,在指标AP下,在VOC2007上提高了8.2 mAP,在COCO2017上提高了5.4 mAP。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验