Suppr超能文献

黄斑保护的机制。

The Mechanism of Macular Sparing.

机构信息

Department of Ophthalmology, Program in Neuroscience, University of California, San Francisco, California 94143, USA; email:

出版信息

Annu Rev Vis Sci. 2021 Sep 15;7:155-179. doi: 10.1146/annurev-vision-100119-125406. Epub 2021 May 12.

Abstract

Patients with homonymous hemianopia sometimes show preservation of the central visual fields, ranging up to 10°. This phenomenon, known as macular sparing, has sparked perpetual controversy. Two main theories have been offered to explain it. The first theory proposes a dual representation of the macula in each hemisphere. After loss of one occipital lobe, the back-up representation in the remaining occipital lobe is postulated to sustain ipsilateral central vision in the blind hemifield. This theory is supported by studies showing that some midline retinal ganglion cells project to the wrong hemisphere, presumably driving neurons in striate cortex that have ipsilateral receptive fields. However, more recent electrophysiological recordings and neuroimaging studies have cast doubt on this theory by showing only a minuscule ipsilateral field representation in early visual cortical areas. The second theory holds that macular sparing arises because the occipital pole, where the macula is represented, remains perfused after occlusion of the posterior cerebral artery because it receives collateral flow from the middle cerebral artery. An objection to this theory is that it cannot account for reports of macular sparing in patients after loss of an entire occipital lobe. On close scrutiny, such reports turn out to be erroneous, arising from inadequate control of fixation during visual field testing. Patients seem able to detect test stimuli on their blind side within the macula or along the vertical meridian because they make surveillance saccades. A purported treatment for hemianopia, called vision restoration therapy, is based on this error. The dual perfusion theory is supported by anatomical studies showing that the middle cerebral artery perfuses the occipital pole in many individuals.In patients with hemianopia from stroke, neuroimaging shows preservation of the occipital pole when macular sparing is present. The frontier dividing the infarcted territory of the posterior cerebral artery and the preserved territory of the middle cerebral artery is variable, but always falls within the representation of the macula, because the macula is so highly magnified. For physicians, macular sparing was an important neurological sign in acute hemianopia because it signified a posterior cerebral artery occlusion. Modern neuroimaging has supplanted the importance of that clinical sign but at the same time confirmed its validity. For patients, macular sparing remains important because it mitigates the impact of hemianopia and preserves the ability to read fluently.

摘要

同型半侧偏盲患者有时会保留中央视野,范围可达 10°。这种现象被称为黄斑回避,引发了持久的争议。有两种主要理论试图解释这一现象。第一种理论提出,每个半球的黄斑都有双重表现。在一个枕叶受损后,假定另一个枕叶的备份表现可以维持在盲侧视野中的同侧中央视力。这一理论得到了一些研究的支持,这些研究表明,一些中线视网膜神经节细胞投射到错误的半球,可能会驱动具有同侧感受野的纹状皮层中的神经元。然而,最近的电生理记录和神经影像学研究通过显示早期视觉皮层区域中只有极小的同侧视野表现,对这一理论提出了质疑。第二种理论认为,黄斑回避的产生是因为,在大脑后动脉闭塞后,代表黄斑的枕极仍然有灌注,因为它接受来自大脑中动脉的侧支血流。对这一理论的反对意见是,它无法解释整个枕叶受损后黄斑回避的患者报告。仔细审查后发现,这些报告实际上是错误的,是由于在视野测试中注视控制不当引起的。患者似乎能够在盲侧的黄斑或垂直中线上检测到测试刺激,因为他们会进行监视扫视。一种所谓的治疗偏盲的方法,即视力恢复疗法,就是基于这个错误。双重灌注理论得到了解剖学研究的支持,这些研究表明,大脑中动脉在许多个体中灌注枕极。在由中风引起的偏盲患者中,神经影像学显示在存在黄斑回避时,枕极得以保留。分隔大脑后动脉梗死区和大脑中动脉保留区的边界是可变的,但总是落在黄斑的代表区域内,因为黄斑的放大率很高。对于医生来说,黄斑回避是急性偏盲的一个重要神经学标志,因为它表明大脑后动脉闭塞。现代神经影像学已经取代了该临床标志的重要性,但同时也证实了其有效性。对于患者来说,黄斑回避仍然很重要,因为它减轻了偏盲的影响,保持了流畅阅读的能力。

相似文献

1
The Mechanism of Macular Sparing.黄斑保护的机制。
Annu Rev Vis Sci. 2021 Sep 15;7:155-179. doi: 10.1146/annurev-vision-100119-125406. Epub 2021 May 12.
10
Quadrant sparing of the macula.黄斑象限保留
Acta Ophthalmol (Copenh). 1975 Jun;53(3):393-402. doi: 10.1111/j.1755-3768.1975.tb01171.x.

引用本文的文献

2
Persistent visual impairments following mild-to-moderate ischemic stroke.轻度至中度缺血性中风后的持续性视力障碍。
Front Ophthalmol (Lausanne). 2025 May 26;5:1505836. doi: 10.3389/fopht.2025.1505836. eCollection 2025.
3
Assessing higher-order visual functions: seeing beyond a flat earth.评估高阶视觉功能:超越平面视野
Dement Neuropsychol. 2025 May 19;19:e2024206. doi: 10.1590/1980-5764-DN-2024-0206. eCollection 2025.
10
Interpretation of the Visual Field in Neuro-ophthalmic Disorders.神经眼科疾病视野解读。
Curr Neurol Neurosci Rep. 2024 Mar;24(3):67-81. doi: 10.1007/s11910-024-01332-3. Epub 2024 Jan 30.

本文引用的文献

2
Interventions for visual field defects in people with stroke.中风患者视野缺损的干预措施。
Cochrane Database Syst Rev. 2019 May 23;5(5):CD008388. doi: 10.1002/14651858.CD008388.pub3.
6
In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex.人脑皮层板层的活体磁共振成像(MRI)。
Neuroimage. 2019 Aug 15;197:707-715. doi: 10.1016/j.neuroimage.2017.09.037. Epub 2017 Sep 20.
8
Probing Human Visual Deficits with Functional Magnetic Resonance Imaging.功能性磁共振成像探测人类视觉缺陷
Annu Rev Vis Sci. 2016 Oct 14;2:171-195. doi: 10.1146/annurev-vision-111815-114535.
9
Capabilities and Limitations of Peripheral Vision.周边视觉的能力与局限。
Annu Rev Vis Sci. 2016 Oct 14;2:437-457. doi: 10.1146/annurev-vision-082114-035733.
10
Circuits and Mechanisms for Surround Modulation in Visual Cortex.视觉皮层中周边调制的环路与机制
Annu Rev Neurosci. 2017 Jul 25;40:425-451. doi: 10.1146/annurev-neuro-072116-031418. Epub 2017 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验