Mahn Mathias, Saraf-Sinik Inbar, Patil Pritish, Pulin Mauro, Bitton Eyal, Karalis Nikolaos, Bruentgens Felicitas, Palgi Shaked, Gat Asaf, Dine Julien, Wietek Jonas, Davidi Ido, Levy Rivka, Litvin Anna, Zhou Fangmin, Sauter Kathrin, Soba Peter, Schmitz Dietmar, Lüthi Andreas, Rost Benjamin R, Wiegert J Simon, Yizhar Ofer
Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland.
Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
Neuron. 2021 May 19;109(10):1621-1635.e8. doi: 10.1016/j.neuron.2021.03.013. Epub 2021 May 11.
Information is carried between brain regions through neurotransmitter release from axonal presynaptic terminals. Understanding the functional roles of defined neuronal projection pathways requires temporally precise manipulation of their activity. However, existing inhibitory optogenetic tools have low efficacy and off-target effects when applied to presynaptic terminals, while chemogenetic tools are difficult to control in space and time. Here, we show that a targeting-enhanced mosquito homolog of the vertebrate encephalopsin (eOPN3) can effectively suppress synaptic transmission through the G signaling pathway. Brief illumination of presynaptic terminals expressing eOPN3 triggers a lasting suppression of synaptic output that recovers spontaneously within minutes in vitro and in vivo. In freely moving mice, eOPN3-mediated suppression of dopaminergic nigrostriatal afferents induces a reversible ipsiversive rotational bias. We conclude that eOPN3 can be used to selectively suppress neurotransmitter release at presynaptic terminals with high spatiotemporal precision, opening new avenues for functional interrogation of long-range neuronal circuits in vivo.
信息通过轴突突触前终末释放神经递质在脑区之间传递。理解特定神经元投射通路的功能作用需要对其活动进行时间精确的操纵。然而,现有的抑制性光遗传学工具应用于突触前终末时效率较低且存在脱靶效应,而化学遗传学工具在空间和时间上难以控制。在这里,我们表明,一种靶向增强的脊椎动物脑视蛋白的蚊子同源物(eOPN3)可以通过G信号通路有效抑制突触传递。短暂照射表达eOPN3的突触前终末会引发突触输出的持久抑制,在体外和体内数分钟内会自发恢复。在自由活动的小鼠中,eOPN3介导的对多巴胺能黑质纹状体传入纤维的抑制会诱导可逆的同侧旋转偏向。我们得出结论,eOPN3可用于在高时空精度下选择性抑制突触前终末的神经递质释放,为体内远距离神经元回路的功能研究开辟了新途径。