Suppr超能文献

基于金字塔池化改进的 U-Net 模型对 COVID-19 肺部 CT 图像中的病变进行分割。

Segmenting lung lesions of COVID-19 from CT images via pyramid pooling improved Unet.

机构信息

Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China.

School of Data Science, Tongren University, Tongren 554300, People's Republic of China.

出版信息

Biomed Phys Eng Express. 2021 May 20;7(4). doi: 10.1088/2057-1976/ac008a.

Abstract

Segmenting lesion regions of Coronavirus Disease 2019 (COVID-19) from computed tomography (CT) images is a challenge owing to COVID-19 lesions characterized by high variation, low contrast between infection lesions and around normal tissues, and blurred boundaries of infections. Moreover, a shortage of available CT dataset hinders deep learning techniques applying to tackling COVID-19. To address these issues, we propose a deep learning-based approach known as PPM-Unet to segmenting COVID-19 lesions from CT images. Our method improves an Unet by adopting pyramid pooling modules instead of the conventional skip connection and then enhances the representation of the neural network by aiding the global attention mechanism. We first pre-train PPM-Unet on COVID-19 dataset of pseudo labels containing1600 samples producing a coarse model. Then we fine-tune the coarse PPM-Unet on the standard COVID-19 dataset consisting of 100 pairs of samples to achieve a fine PPM-Unet. Qualitative and quantitative results demonstrate that our method can accurately segment COVID-19 infection regions from CT images, and achieve higher performance than other state-of-the-art segmentation models in this study. It offers a promising tool to lay a foundation for quantitatively detecting COVID-19 lesions.

摘要

从计算机断层扫描 (CT) 图像中分割 2019 年冠状病毒病 (COVID-19) 的病变区域是一项挑战,因为 COVID-19 病变的特征是高度变化、感染病变与周围正常组织之间的对比度低以及感染边界模糊。此外,可用的 CT 数据集短缺阻碍了深度学习技术在解决 COVID-19 方面的应用。为了解决这些问题,我们提出了一种基于深度学习的方法,称为 PPM-Unet,用于从 CT 图像中分割 COVID-19 病变。我们的方法通过采用金字塔池化模块而不是传统的跳过连接来改进 U 型网络,然后通过辅助全局注意力机制来增强神经网络的表示,从而提高了网络的性能。我们首先在包含 1600 个样本的伪标签 COVID-19 数据集上对 PPM-Unet 进行预训练,生成一个粗模型。然后,我们在由 100 对样本组成的标准 COVID-19 数据集上对粗 PPM-Unet 进行微调,以获得精细的 PPM-Unet。定性和定量结果表明,我们的方法可以从 CT 图像中准确地分割 COVID-19 感染区域,并在本研究中的其他最先进的分割模型中实现更高的性能。它为定量检测 COVID-19 病变提供了一种有前途的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验