Suppr超能文献

CARes-UNet:用于胸部 CT 图像中 COVID-19 病变分割的基于内容感知残差 UNet 模型。

CARes-UNet: Content-aware residual UNet for lesion segmentation of COVID-19 from chest CT images.

机构信息

Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China.

Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

Med Phys. 2021 Nov;48(11):7127-7140. doi: 10.1002/mp.15231. Epub 2021 Sep 25.

Abstract

PURPOSE

Coronavirus disease 2019 (COVID-19) has caused a serious global health crisis. It has been proven that the deep learning method has great potential to assist doctors in diagnosing COVID-19 by automatically segmenting the lesions in computed tomography (CT) slices. However, there are still several challenges restricting the application of these methods, including high variation in lesion characteristics and low contrast between lesion areas and healthy tissues. Moreover, the lack of high-quality labeled samples and large number of patients lead to the urgency to develop a high accuracy model, which performs well not only under supervision but also with semi-supervised methods.

METHODS

We propose a content-aware lung infection segmentation deep residual network (content-aware residual UNet (CARes-UNet)) to segment the lesion areas of COVID-19 from the chest CT slices. In our CARes-UNet, the residual connection was used in the convolutional block, which alleviated the degradation problem during the training. Then, the content-aware upsampling modules were introduced to improve the performance of the model while reducing the computation cost. Moreover, to achieve faster convergence, an advanced optimizer named Ranger was utilized to update the model's parameters during training. Finally, we employed a semi-supervised segmentation framework to deal with the problem of lacking pixel-level labeled data.

RESULTS

We evaluated our approach using three public datasets with multiple metrics and compared its performance to several models. Our method outperforms other models in multiple indicators, for instance in terms of Dice coefficient on COVID-SemiSeg Dataset, CARes-UNet got the score 0.731, and semi-CARes-UNet further boosted it to 0.776. More ablation studies were done and validated the effectiveness of each key component of our proposed model.

CONCLUSIONS

Compared with the existing neural network methods applied to the COVID-19 lesion segmentation tasks, our CARes-UNet can gain more accurate segmentation results, and semi-CARes-UNet can further improve it using semi-supervised learning methods while presenting a possible way to solve the problem of lack of high-quality annotated samples. Our CARes-UNet and semi-CARes-UNet can be used in artificial intelligence-empowered computer-aided diagnosis system to improve diagnostic accuracy in this ongoing COVID-19 pandemic.

摘要

目的

新型冠状病毒病(COVID-19)引发了严重的全球卫生危机。事实证明,深度学习方法在通过自动分割计算机断层扫描(CT)切片中的病变部位来协助医生诊断 COVID-19 方面具有巨大潜力。然而,这些方法的应用仍然存在一些挑战,包括病变特征的高度变化以及病变区域与健康组织之间的对比度低。此外,缺乏高质量的标记样本和大量患者导致迫切需要开发高精度的模型,该模型不仅在监督下表现良好,而且在半监督方法下也表现良好。

方法

我们提出了一种基于内容感知的肺部感染分割深度残差网络(基于内容感知的残差 U 型网络(CARes-UNet)),用于从胸部 CT 切片中分割 COVID-19 的病变区域。在我们的 CARes-UNet 中,在卷积块中使用了残差连接,从而缓解了训练过程中的退化问题。然后,引入了基于内容感知的上采样模块,以提高模型的性能,同时降低计算成本。此外,为了实现更快的收敛,在训练过程中使用了一种名为 Ranger 的高级优化器来更新模型的参数。最后,我们采用了一种半监督分割框架来解决缺少像素级标记数据的问题。

结果

我们使用三个具有多种指标的公共数据集评估了我们的方法,并将其性能与其他几个模型进行了比较。我们的方法在多个指标上优于其他模型,例如在 COVID-SemiSeg 数据集的 Dice 系数方面,CARes-UNet 的得分为 0.731,而半 CARes-UNet 进一步将其提高到 0.776。进行了更多的消融研究,验证了我们提出的模型的每个关键组件的有效性。

结论

与应用于 COVID-19 病变分割任务的现有神经网络方法相比,我们的 CARes-UNet 可以获得更准确的分割结果,而半 CARes-UNet 可以通过半监督学习方法进一步提高它,同时为解决缺乏高质量标记样本的问题提供了一种可能的方法。我们的 CARes-UNet 和半 CARes-UNet 可用于人工智能赋能的计算机辅助诊断系统,以提高当前 COVID-19 大流行期间的诊断准确性。

相似文献

本文引用的文献

6
Image Segmentation Using Deep Learning: A Survey.基于深度学习的图像分割技术综述。
IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3523-3542. doi: 10.1109/TPAMI.2021.3059968. Epub 2022 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验