Liu Xinyue, Mai Qian, Mao Bijun, Bao Yanjun, Yan Jiahao, Li Baojun
Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
ACS Nano. 2022 Jan 25;16(1):675-682. doi: 10.1021/acsnano.1c08154. Epub 2022 Jan 11.
van der Waals (vdW) heterostructures based on vertical-stacking transition metal dichalcogenides (TMDCs) with tunable excitonic energies and spin-valley properties show intriguing optical and optoelectronic applications. Additionally, vdW heterostructures with high refractive indices, exciton-induced Lorentzian dispersion, and controllable structures are ideal building blocks as optical resonators for subwavelength light confinement and effective light-matter interaction, which have not been studied. Herein, we build vdW hetero-nanoslits based on tungsten disulfide (WS) and hexagonal boron nitride (hBN) multilayers. The multipole optical modes arise from the evolution of electromagnetic near-field distributions through engineering of refractive index and corresponding optical path differences (OPDs). More importantly, the coupling between electromagnetic multipoles with spectral and spatial overlap facilitates the directional scattering with an engineered forward-to-backward (F/B) ratio from 0.1 to 100.0 owing to generalized Kerker effects. Through further combination of WS monolayers and WS/hBN hetero-nanoslits, the photoluminescence (PL) modulation in the range of 50% to 800% is achieved. The enhancement factor and modulation range are comparable to the best performances of single-element plasmonic or dielectric nanostructures. This work provides a different insight into designing nanophotonic devices in the visible range by solely relying on vdW heterostructures.
基于具有可调激子能量和自旋谷特性的垂直堆叠过渡金属二卤化物(TMDC)的范德华(vdW)异质结构展现出了有趣的光学和光电应用。此外,具有高折射率、激子诱导的洛伦兹色散和可控结构的vdW异质结构是作为亚波长光限制和有效光与物质相互作用的光学谐振器的理想构建块,但尚未得到研究。在此,我们基于二硫化钨(WS)和六方氮化硼(hBN)多层构建了vdW异质纳米狭缝。多极光学模式源于通过折射率工程和相应的光程差(OPD)对电磁近场分布的演化。更重要的是,由于广义克尔效应,具有光谱和空间重叠的电磁多极之间的耦合促进了具有从0.1到100.0的工程化前向与后向(F/B)比的定向散射。通过进一步将WS单层与WS/hBN异质纳米狭缝相结合,实现了50%至800%范围内的光致发光(PL)调制。增强因子和调制范围与单元素等离子体或介电纳米结构的最佳性能相当。这项工作为仅依靠vdW异质结构在可见光范围内设计纳米光子器件提供了不同的见解。