Suppr超能文献

使用计算定性话语分析支持方法跟踪冲突和情绪。

Tracking conflict and emotions with a computational qualitative discourse analytic support approach.

机构信息

School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Australia.

Digital Media Research Centre, Queensland University of Technology, Brisbane, Australia.

出版信息

PLoS One. 2021 May 13;16(5):e0251186. doi: 10.1371/journal.pone.0251186. eCollection 2021.

Abstract

Accurate inferences of the emotional state of conversation participants can be critical in shaping analysis and interpretation of conversational exchanges. In qualitative analyses of discourse, most labelling of the perceived emotional state of conversation participants is performed by hand, and is limited to selected moments where an analyst may believe that emotional information is valuable for interpretation. This reliance on manual labelling processes can have implications for repeatability and objectivity, both in terms of accuracy, but also in terms of changes in emotional state that might go unnoticed. In this paper we introduce a qualitative discourse analytic support method intended to support the labelling of emotional state of conversational participants over time. We demonstrate the utility of the technique using a suite of well-studied broadcast interviews, taking a particular focus on identifying instances of inter-speaker conflict. Our findings indicate that this two-step machine learning approach can help decode how moments of conflict arise, sustain, and are resolved through the mapping of emotion over time. We show how such a method can provide useful evidence of the change in emotional state by interlocutors which could be useful to prompt and support further in-depth study.

摘要

准确推断对话参与者的情绪状态对于分析和解释对话交流至关重要。在话语的定性分析中,大多数对话参与者感知情绪状态的标记都是手动完成的,并且仅限于分析人员认为情感信息对解释有价值的特定时刻。这种对手动标记过程的依赖可能会对可重复性和客观性产生影响,不仅在准确性方面,而且在可能被忽视的情绪状态变化方面也是如此。在本文中,我们引入了一种定性话语分析支持方法,旨在支持随着时间的推移对对话参与者情绪状态的标记。我们使用一系列经过充分研究的广播采访来展示该技术的实用性,特别关注识别说话者之间冲突的实例。我们的研究结果表明,这种两步机器学习方法可以帮助通过随时间映射情感来解码冲突是如何产生、持续和解决的。我们展示了这种方法如何通过说话者的情感变化提供有用的证据,这可能有助于提示和支持进一步的深入研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3446/8118557/dabaf372864e/pone.0251186.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验