Suppr超能文献

用于精确评估类器官机械特性的透明、顺应性 3D 介观结构。

Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids.

机构信息

Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

出版信息

Adv Mater. 2021 Jun;33(25):e2100026. doi: 10.1002/adma.202100026. Epub 2021 May 13.

Abstract

Recently developed methods for transforming 2D patterns of thin-film materials into 3D mesostructures create many interesting opportunities in microsystems design. A growing area of interest is in multifunctional thermal, electrical, chemical, and optical interfaces to biological tissues, particularly 3D multicellular, millimeter-scale constructs, such as spheroids, assembloids, and organoids. Herein, examples of 3D mechanical interfaces are presented, in which thin ribbons of parylene-C form the basis of transparent, highly compliant frameworks that can be reversibly opened and closed to capture, envelop, and mechanically restrain fragile 3D tissues in a gentle, nondestructive manner, for precise measurements of viscoelastic properties using techniques in nanoindentation. Finite element analysis serves as a design tool to guide selection of geometries and material parameters for shape-matching 3D architectures tailored to organoids of interest. These computational approaches also quantitate all aspects of deformations during the processes of opening and closing the structures and of forces imparted by them onto the surfaces of enclosed soft tissues. Studies of cerebral organoids by nanoindentation show effective Young's moduli in the range from 1.5 to 2.5 kPa depending on the age of the organoid. This collection of results suggests broad utility of compliant 3D mesostructures in noninvasive mechanical measurements of millimeter-scale, soft biological tissues.

摘要

最近开发的将薄膜材料的 2D 图案转化为 3D 介观结构的方法在微系统设计中创造了许多有趣的机会。一个日益受到关注的领域是多功能热、电、化学和光与生物组织的接口,特别是 3D 多细胞、毫米级的构建体,如球体、聚集体和类器官。本文介绍了 3D 机械接口的例子,其中聚对二甲苯-C 的薄带构成了透明、高弹性框架的基础,这些框架可以可逆地打开和关闭,以温和、非破坏性的方式捕获、包围和机械限制脆弱的 3D 组织,以便使用纳米压痕技术精确测量粘弹性特性。有限元分析作为一种设计工具,用于指导选择几何形状和材料参数,以适应感兴趣的类器官的形状匹配 3D 架构。这些计算方法还定量描述了打开和关闭结构以及它们对封闭软组织表面施加的力的过程中的所有变形方面。通过纳米压痕对脑类器官的研究表明,有效杨氏模量在 1.5 到 2.5 kPa 之间,具体取决于类器官的年龄。这一系列结果表明,在毫米级软生物组织的非侵入性机械测量中,使用柔顺 3D 介观结构具有广泛的应用。

相似文献

2
Mechanically Guided Hierarchical Assembly of 3D Mesostructures.三维介观结构的机械引导分级组装
Adv Mater. 2022 Mar;34(12):e2109416. doi: 10.1002/adma.202109416. Epub 2022 Feb 10.
8
Mechanically active materials in three-dimensional mesostructures.三维介观结构中的机械活性材料。
Sci Adv. 2018 Sep 14;4(9):eaat8313. doi: 10.1126/sciadv.aat8313. eCollection 2018 Sep.

引用本文的文献

3
Opportunities and Challenges of Brain-on-a-Chip Interfaces.脑机接口的机遇与挑战
Cyborg Bionic Syst. 2025 Jun 17;6:0287. doi: 10.34133/cbsystems.0287. eCollection 2025.
8
Decellularized Biohybrid Nerve Promotes Motor Axon Projections.去细胞生物杂交神经促进运动轴突投射。
Adv Healthc Mater. 2024 Dec;13(30):e2401875. doi: 10.1002/adhm.202401875. Epub 2024 Sep 1.

本文引用的文献

3
Advanced 4D Bioprinting Technologies for Brain Tissue Modeling and Study.用于脑组织建模与研究的先进4D生物打印技术
Int J Smart Nano Mater. 2019;10(3):177-204. doi: 10.1080/19475411.2019.1631899. Epub 2019 Jul 3.
6
Assembly of Foldable 3D Microstructures Using Graphene Hinges.使用石墨烯铰链组装可折叠3D微结构
Adv Mater. 2020 Jul;32(28):e2001303. doi: 10.1002/adma.202001303. Epub 2020 May 27.
7
Cortical cell stiffness is independent of substrate mechanics.皮质细胞的硬度与基质力学无关。
Nat Mater. 2020 Sep;19(9):1019-1025. doi: 10.1038/s41563-020-0684-x. Epub 2020 May 25.
8
Nerve guidance conduit design based on self-rolling tubes.基于自卷管的神经导向导管设计。
Mater Today Bio. 2020 Jan 27;5:100042. doi: 10.1016/j.mtbio.2020.100042. eCollection 2020 Jan.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验