Suppr超能文献

用于精确评估类器官机械特性的透明、顺应性 3D 介观结构。

Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids.

机构信息

Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

出版信息

Adv Mater. 2021 Jun;33(25):e2100026. doi: 10.1002/adma.202100026. Epub 2021 May 13.

Abstract

Recently developed methods for transforming 2D patterns of thin-film materials into 3D mesostructures create many interesting opportunities in microsystems design. A growing area of interest is in multifunctional thermal, electrical, chemical, and optical interfaces to biological tissues, particularly 3D multicellular, millimeter-scale constructs, such as spheroids, assembloids, and organoids. Herein, examples of 3D mechanical interfaces are presented, in which thin ribbons of parylene-C form the basis of transparent, highly compliant frameworks that can be reversibly opened and closed to capture, envelop, and mechanically restrain fragile 3D tissues in a gentle, nondestructive manner, for precise measurements of viscoelastic properties using techniques in nanoindentation. Finite element analysis serves as a design tool to guide selection of geometries and material parameters for shape-matching 3D architectures tailored to organoids of interest. These computational approaches also quantitate all aspects of deformations during the processes of opening and closing the structures and of forces imparted by them onto the surfaces of enclosed soft tissues. Studies of cerebral organoids by nanoindentation show effective Young's moduli in the range from 1.5 to 2.5 kPa depending on the age of the organoid. This collection of results suggests broad utility of compliant 3D mesostructures in noninvasive mechanical measurements of millimeter-scale, soft biological tissues.

摘要

最近开发的将薄膜材料的 2D 图案转化为 3D 介观结构的方法在微系统设计中创造了许多有趣的机会。一个日益受到关注的领域是多功能热、电、化学和光与生物组织的接口,特别是 3D 多细胞、毫米级的构建体,如球体、聚集体和类器官。本文介绍了 3D 机械接口的例子,其中聚对二甲苯-C 的薄带构成了透明、高弹性框架的基础,这些框架可以可逆地打开和关闭,以温和、非破坏性的方式捕获、包围和机械限制脆弱的 3D 组织,以便使用纳米压痕技术精确测量粘弹性特性。有限元分析作为一种设计工具,用于指导选择几何形状和材料参数,以适应感兴趣的类器官的形状匹配 3D 架构。这些计算方法还定量描述了打开和关闭结构以及它们对封闭软组织表面施加的力的过程中的所有变形方面。通过纳米压痕对脑类器官的研究表明,有效杨氏模量在 1.5 到 2.5 kPa 之间,具体取决于类器官的年龄。这一系列结果表明,在毫米级软生物组织的非侵入性机械测量中,使用柔顺 3D 介观结构具有广泛的应用。

相似文献

1
Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids.
Adv Mater. 2021 Jun;33(25):e2100026. doi: 10.1002/adma.202100026. Epub 2021 May 13.
2
Mechanically Guided Hierarchical Assembly of 3D Mesostructures.
Adv Mater. 2022 Mar;34(12):e2109416. doi: 10.1002/adma.202109416. Epub 2022 Feb 10.
3
Biocompatible micro tweezers for 3D hydrogel organoid array mechanical characterization.
PLoS One. 2022 Jan 24;17(1):e0262950. doi: 10.1371/journal.pone.0262950. eCollection 2022.
4
Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.
Acta Biomater. 2018 Apr 15;71:388-397. doi: 10.1016/j.actbio.2018.02.017. Epub 2018 Mar 1.
5
Remotely Controlled, Reversible, On-Demand Assembly and Reconfiguration of 3D Mesostructures via Liquid Crystal Elastomer Platforms.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):8929-8939. doi: 10.1021/acsami.0c21371. Epub 2021 Feb 12.
6
Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15368-15377. doi: 10.1073/pnas.1907732116. Epub 2019 Jul 17.
7
Estimation of the Young's moduli of fresh human oropharyngeal soft tissues using indentation testing.
J Mech Behav Biomed Mater. 2018 Oct;86:352-358. doi: 10.1016/j.jmbbm.2018.07.004. Epub 2018 Jul 3.
8
Mechanically active materials in three-dimensional mesostructures.
Sci Adv. 2018 Sep 14;4(9):eaat8313. doi: 10.1126/sciadv.aat8313. eCollection 2018 Sep.
10
Remotely Triggered Assembly of 3D Mesostructures Through Shape-Memory Effects.
Adv Mater. 2019 Dec;31(52):e1905715. doi: 10.1002/adma.201905715. Epub 2019 Nov 13.

引用本文的文献

1
Beyond Structure: Next-Generation Electrophysiological Platforms for Functional Brain Organoids.
Int J Stem Cells. 2025 Aug 30;18(3):215-236. doi: 10.15283/ijsc25056. Epub 2025 Jul 31.
2
Advancing next-generation brain organoid platforms for investigating traumatic brain injury from repeated blast exposures.
Front Bioeng Biotechnol. 2025 Jun 18;13:1553609. doi: 10.3389/fbioe.2025.1553609. eCollection 2025.
3
Opportunities and Challenges of Brain-on-a-Chip Interfaces.
Cyborg Bionic Syst. 2025 Jun 17;6:0287. doi: 10.34133/cbsystems.0287. eCollection 2025.
4
Low-cost robotic manipulation of live microtissues for cancer drug testing.
Sci Adv. 2025 May 16;11(20):eads1631. doi: 10.1126/sciadv.ads1631. Epub 2025 May 14.
6
The e-Flower: A hydrogel-actuated 3D MEA for brain spheroid electrophysiology.
Sci Adv. 2024 Oct 18;10(42):eadp8054. doi: 10.1126/sciadv.adp8054. Epub 2024 Oct 16.
7
Simultaneous electromechanical monitoring in engineered heart tissues using a mesoscale framework.
Sci Adv. 2024 Sep 13;10(37):eado7089. doi: 10.1126/sciadv.ado7089. Epub 2024 Sep 11.
8
Decellularized Biohybrid Nerve Promotes Motor Axon Projections.
Adv Healthc Mater. 2024 Dec;13(30):e2401875. doi: 10.1002/adhm.202401875. Epub 2024 Sep 1.
9
Multi-Sensor Origami Platform: A Customizable System for Obtaining Spatiotemporally Precise Functional Readouts in 3D Models.
Adv Sci (Weinh). 2024 Jun;11(24):e2305555. doi: 10.1002/advs.202305555. Epub 2024 Apr 18.
10
Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices.
BME Front. 2023 Dec 7;4:0034. doi: 10.34133/bmef.0034. eCollection 2023.

本文引用的文献

1
Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids.
Sci Adv. 2021 Mar 17;7(12). doi: 10.1126/sciadv.abf9153. Print 2021 Mar.
2
Manipulating the Tumor Microenvironment in Tumor Organoids Induces Phenotypic Changes and Chemoresistance.
iScience. 2020 Nov 23;23(12):101851. doi: 10.1016/j.isci.2020.101851. eCollection 2020 Dec 18.
3
Advanced 4D Bioprinting Technologies for Brain Tissue Modeling and Study.
Int J Smart Nano Mater. 2019;10(3):177-204. doi: 10.1080/19475411.2019.1631899. Epub 2019 Jul 3.
4
Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures.
Sci Rep. 2020 Jun 24;10(1):10275. doi: 10.1038/s41598-020-67012-7.
5
High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays.
Nat Biomed Eng. 2020 Sep;4(9):863-874. doi: 10.1038/s41551-020-0565-2. Epub 2020 Jun 8.
6
Assembly of Foldable 3D Microstructures Using Graphene Hinges.
Adv Mater. 2020 Jul;32(28):e2001303. doi: 10.1002/adma.202001303. Epub 2020 May 27.
7
Cortical cell stiffness is independent of substrate mechanics.
Nat Mater. 2020 Sep;19(9):1019-1025. doi: 10.1038/s41563-020-0684-x. Epub 2020 May 25.
8
Nerve guidance conduit design based on self-rolling tubes.
Mater Today Bio. 2020 Jan 27;5:100042. doi: 10.1016/j.mtbio.2020.100042. eCollection 2020 Jan.
9
Soft three-dimensional network materials with rational bio-mimetic designs.
Nat Commun. 2020 Mar 4;11(1):1180. doi: 10.1038/s41467-020-14996-5.
10
Measuring viscoelasticity of soft biological samples using atomic force microscopy.
Soft Matter. 2020 Jan 7;16(1):64-81. doi: 10.1039/c9sm01020c. Epub 2019 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验