Suppr超能文献

胶囊-LPI:一种基于胶囊网络的 LncRNA-蛋白质相互作用预测工具。

Capsule-LPI: a LncRNA-protein interaction predicting tool based on a capsule network.

机构信息

Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Qianjin Street, 130012, Changchun, China.

Department of Computer Science, Faculty of Engineering, University of Bristol, Bristol, BS8 1UB, UK.

出版信息

BMC Bioinformatics. 2021 May 13;22(1):246. doi: 10.1186/s12859-021-04171-y.

Abstract

BACKGROUND

Long noncoding RNAs (lncRNAs) play important roles in multiple biological processes. Identifying LncRNA-protein interactions (LPIs) is key to understanding lncRNA functions. Although some LPIs computational methods have been developed, the LPIs prediction problem remains challenging. How to integrate multimodal features from more perspectives and build deep learning architectures with better recognition performance have always been the focus of research on LPIs.

RESULTS

We present a novel multichannel capsule network framework to integrate multimodal features for LPI prediction, Capsule-LPI. Capsule-LPI integrates four groups of multimodal features, including sequence features, motif information, physicochemical properties and secondary structure features. Capsule-LPI is composed of four feature-learning subnetworks and one capsule subnetwork. Through comprehensive experimental comparisons and evaluations, we demonstrate that both multimodal features and the architecture of the multichannel capsule network can significantly improve the performance of LPI prediction. The experimental results show that Capsule-LPI performs better than the existing state-of-the-art tools. The precision of Capsule-LPI is 87.3%, which represents a 1.7% improvement. The F-value of Capsule-LPI is 92.2%, which represents a 1.4% improvement.

CONCLUSIONS

This study provides a novel and feasible LPI prediction tool based on the integration of multimodal features and a capsule network. A webserver ( http://csbg-jlu.site/lpc/predict ) is developed to be convenient for users.

摘要

背景

长非编码 RNA(lncRNAs)在多种生物过程中发挥着重要作用。鉴定 lncRNA-蛋白质相互作用(LPIs)是理解 lncRNA 功能的关键。尽管已经开发了一些 LPIs 计算方法,但 LPI 预测问题仍然具有挑战性。如何从更多角度整合多模态特征,并构建具有更好识别性能的深度学习架构,一直是 LPIs 研究的重点。

结果

我们提出了一种新的多通道胶囊网络框架,用于整合多模态特征进行 LPI 预测,即 Capsule-LPI。Capsule-LPI 集成了四组多模态特征,包括序列特征、基序信息、理化性质和二级结构特征。Capsule-LPI 由四个特征学习子网和一个胶囊子网组成。通过全面的实验比较和评估,我们证明了多模态特征和多通道胶囊网络的架构都可以显著提高 LPI 预测的性能。实验结果表明,Capsule-LPI 优于现有的最先进的工具。Capsule-LPI 的精度为 87.3%,提高了 1.7%。Capsule-LPI 的 F 值为 92.2%,提高了 1.4%。

结论

本研究基于多模态特征和胶囊网络的集成,提供了一种新颖且可行的 LPI 预测工具。开发了一个网络服务器(http://csbg-jlu.site/lpc/predict),方便用户使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/161b/8120853/d4eb8d1082a1/12859_2021_4171_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验