College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
Electronic Information School, Wuhan University, Wuhan 430072, China.
Bioinformatics. 2020 Aug 1;36(15):4316-4322. doi: 10.1093/bioinformatics/btaa501.
Drug-drug interactions (DDIs) are one of the major concerns in pharmaceutical research. Many machine learning based methods have been proposed for the DDI prediction, but most of them predict whether two drugs interact or not. The studies revealed that DDIs could cause different subsequent events, and predicting DDI-associated events is more useful for investigating the mechanism hidden behind the combined drug usage or adverse reactions.
In this article, we collect DDIs from DrugBank database, and extract 65 categories of DDI events by dependency analysis and events trimming. We propose a multimodal deep learning framework named DDIMDL that combines diverse drug features with deep learning to build a model for predicting DDI-associated events. DDIMDL first constructs deep neural network (DNN)-based sub-models, respectively, using four types of drug features: chemical substructures, targets, enzymes and pathways, and then adopts a joint DNN framework to combine the sub-models to learn cross-modality representations of drug-drug pairs and predict DDI events. In computational experiments, DDIMDL produces high-accuracy performances and has high efficiency. Moreover, DDIMDL outperforms state-of-the-art DDI event prediction methods and baseline methods. Among all the features of drugs, the chemical substructures seem to be the most informative. With the combination of substructures, targets and enzymes, DDIMDL achieves an accuracy of 0.8852 and an area under the precision-recall curve of 0.9208.
The source code and data are available at https://github.com/YifanDengWHU/DDIMDL.
Supplementary data are available at Bioinformatics online.
药物-药物相互作用(DDI)是药物研究中的主要关注点之一。已经提出了许多基于机器学习的方法来进行 DDI 预测,但大多数方法都预测两种药物是否相互作用。研究表明,DDI 可能导致不同的后续事件,预测 DDI 相关事件对于研究联合用药或不良反应背后隐藏的机制更有用。
在本文中,我们从 DrugBank 数据库中收集了 DDI,并通过依赖分析和事件修剪提取了 65 类 DDI 事件。我们提出了一种名为 DDIMDL 的多模态深度学习框架,该框架结合了多种药物特征和深度学习,为预测 DDI 相关事件构建模型。DDIMDL 首先使用四种药物特征(化学子结构、靶点、酶和途径)构建基于深度神经网络(DNN)的子模型,然后采用联合 DNN 框架将子模型组合起来,学习药物-药物对的跨模态表示,并预测 DDI 事件。在计算实验中,DDIMDL 产生了高精度的性能,并且具有高效率。此外,DDIMDL 优于最先进的 DDI 事件预测方法和基线方法。在所有药物特征中,化学子结构似乎是最具信息量的。通过子结构、靶点和酶的结合,DDIMDL 实现了 0.8852 的准确率和 0.9208 的精度-召回曲线下面积。
源代码和数据可在 https://github.com/YifanDengWHU/DDIMDL 获得。
补充数据可在生物信息学在线获得。