文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

二聚体 Her2 特异性亲和体介导的顺铂载纳米颗粒用于肿瘤增强化疗-放疗。

Dimeric Her2-specific affibody mediated cisplatin-loaded nanoparticles for tumor enhanced chemo-radiotherapy.

机构信息

Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.

School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China.

出版信息

J Nanobiotechnology. 2021 May 13;19(1):138. doi: 10.1186/s12951-021-00885-6.


DOI:10.1186/s12951-021-00885-6
PMID:33985511
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8120847/
Abstract

BACKGROUND: Solid tumor hypoxic conditions prevent the generation of reactive oxygen species (ROS) and the formation of DNA double-strand breaks (DSBs) induced by ionizing radiation, which ultimately contributes to radiotherapy (RT) resistance. Recently, there have been significant technical advances in nanomedicine to reduce hypoxia by facilitating in situ O production, which in turn serves as a "radiosensitizer" to increase the sensitivity of tumor cells to ionizing radiation. However, off-target damage to the tumor-surrounding healthy tissue by high-energy radiation is often unavoidable, and tumor cells that are further away from the focal point of ionizing radiation may avoid damage. Therefore, there is an urgent need to develop an intelligent targeted nanoplatform to enable precise enhanced RT-induced DNA damage and combined therapy. RESULTS: Human epidermal growth factor receptor 2 (Her2)-specific dimeric affibody (Z) mediated cisplatin-loaded mesoporous polydopamine/MnO/polydopamine nanoparticles (Pt@mPDA/MnO/PDA-Z NPs) for MRI and enhanced chemo-radiotherapy of Her2-positive ovarian tumors is reported. These NPs are biodegradable under a simulated tumor microenvironment, resulting in accelerated cisplatin release, as well as localized production of O. Z, produced using the E. coli expression system, endowed NPs with Her2-dependent binding ability in Her2-positive SKOV-3 cells. An in vivo MRI revealed obvious T contrast enhancement at the tumor site. Moreover, these NPs achieved efficient tumor homing and penetration via the efficient internalization and penetrability of Z. These NPs exhibited excellent inhibition of tumor growth with X-ray irradiation. An immunofluorescence assay showed that these NPs significantly reduced the expression of HIF-1α and improved ROS levels, resulting in radiosensitization. CONCLUSIONS: The nanocarriers described in the present study integrated Her2 targeting, diagnosis and RT sensitization into a single platform, thus providing a novel approach for translational tumor theranostics.

摘要

背景:实体瘤缺氧环境会阻止由电离辐射产生的活性氧 (ROS) 和 DNA 双链断裂 (DSB) 的形成,这最终导致放射治疗 (RT) 抵抗。最近,纳米医学在减少缺氧方面取得了重大技术进展,通过促进原位 O 生成来实现这一目标,进而充当“放射增敏剂”,提高肿瘤细胞对电离辐射的敏感性。然而,高能射线对肿瘤周围健康组织的非靶向损伤往往是不可避免的,而且远离电离辐射焦点的肿瘤细胞可能会避免损伤。因此,迫切需要开发一种智能靶向纳米平台,以实现精确增强 RT 诱导的 DNA 损伤和联合治疗。

结果:报告了人表皮生长因子受体 2 (Her2) 特异性二聚体亲和体 (Z) 介导的载顺铂介孔聚多巴胺/MnO/聚多巴胺纳米粒子 (Pt@mPDA/MnO/PDA-Z NPs) 用于 MRI 和增强 Her2 阳性卵巢肿瘤的化疗放疗。这些 NPs 在模拟肿瘤微环境下可生物降解,导致顺铂加速释放,并局部产生 O。使用大肠杆菌表达系统产生的 Z 赋予 NPs 在 Her2 阳性 SKOV-3 细胞中具有 Her2 依赖性结合能力。体内 MRI 显示肿瘤部位明显的 T 对比增强。此外,这些 NPs 通过 Z 的高效内化和穿透能力实现了高效的肿瘤归巢和渗透。这些 NPs 在 X 射线照射下表现出优异的肿瘤生长抑制作用。免疫荧光分析表明,这些 NPs 显著降低了 HIF-1α 的表达并提高了 ROS 水平,从而实现了放射增敏。

结论:本研究中描述的纳米载体将 Her2 靶向、诊断和 RT 增敏集成到一个单一平台中,为转化肿瘤治疗提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/c42ac9e9bc9b/12951_2021_885_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/6dba3d9fc46e/12951_2021_885_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/ff794e44b7a7/12951_2021_885_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/1a0d06f3886e/12951_2021_885_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/f60c56f79b36/12951_2021_885_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/3169c6937398/12951_2021_885_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/336566d476d9/12951_2021_885_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/f774fd720533/12951_2021_885_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/ff776d6fd9da/12951_2021_885_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/f0356bea0d20/12951_2021_885_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/c42ac9e9bc9b/12951_2021_885_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/6dba3d9fc46e/12951_2021_885_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/ff794e44b7a7/12951_2021_885_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/1a0d06f3886e/12951_2021_885_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/f60c56f79b36/12951_2021_885_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/3169c6937398/12951_2021_885_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/336566d476d9/12951_2021_885_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/f774fd720533/12951_2021_885_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/ff776d6fd9da/12951_2021_885_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/f0356bea0d20/12951_2021_885_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/8120847/c42ac9e9bc9b/12951_2021_885_Fig9_HTML.jpg

相似文献

[1]
Dimeric Her2-specific affibody mediated cisplatin-loaded nanoparticles for tumor enhanced chemo-radiotherapy.

J Nanobiotechnology. 2021-5-13

[2]
Cisplatin-loaded mesoporous polydopamine nanoparticles capped with MnO and coated with platelet membrane provide synergistic anti-tumor therapy.

Int J Pharm. 2024-5-10

[3]
Dual-Stimuli-Responsive Multifunctional GdHfO Nanoparticles for MRI-Guided Combined Chemo-/Photothermal-/Radiotherapy of Resistant Tumors.

ACS Appl Mater Interfaces. 2020-8-12

[4]
Synergy of Tumor Microenvironment Remodeling and Autophagy Inhibition to Sensitize Radiation for Bladder Cancer Treatment.

Theranostics. 2020

[5]
Overcoming chemotherapy resistance using pH-sensitive hollow MnO nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma.

J Nanobiotechnology. 2021-5-26

[6]
Oxygen-supplementing mesoporous polydopamine nanosponges with WS QDs-embedded for CT/MSOT/MR imaging and thermoradiotherapy of hypoxic cancer.

Biomaterials. 2019-8-5

[7]
Alleviating the hypoxic tumor microenvironment with MnO-coated CeO nanoplatform for magnetic resonance imaging guided radiotherapy.

J Nanobiotechnology. 2023-3-15

[8]
GE11-PDA-Pt@USPIOs nano-formulation for relief of tumor hypoxia and MRI/PAI-guided tumor radio-chemotherapy.

Biomater Sci. 2019-4-23

[9]
Multifunctional albumin-MnO₂ nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response.

ACS Nano. 2014-4-4

[10]
Intelligent design of polymer nanogels for full-process sensitized radiotherapy and dual-mode computed tomography/magnetic resonance imaging of tumors.

Theranostics. 2022

引用本文的文献

[1]
Macrophage membrane-functionalized nanotherapeutics for tumor targeted therapy.

Theranostics. 2025-3-31

[2]
Nanoradiosensitizers in glioblastoma treatment: recent advances and future perspectives.

Nanomedicine (Lond). 2024

[3]
Advancing Ovarian Cancer Therapeutics: The Role of Targeted Drug Delivery Systems.

Int J Nanomedicine. 2024-9-10

[4]
Albumin incorporation into recognising layer of HER2-specific magnetic nanoparticles as a tool for optimal targeting of the acidic tumor microenvironment.

Heliyon. 2024-7-6

[5]
Ingenious designed a HER2-Specific macrophage biomimetic multifunctional nanoplatform for enhanced bio-photothermal synergistic therapy in HER2 positive breast cancer.

Mater Today Bio. 2024-5-20

[6]
Protein disulfide isomerase family member 4 promotes triple-negative breast cancer tumorigenesis and radiotherapy resistance through JNK pathway.

Breast Cancer Res. 2024-1-2

[7]
Manganese-Based Nanotheranostics for Magnetic Resonance Imaging-Mediated Precise Cancer Management.

Int J Nanomedicine. 2023

[8]
The Role of Selenium and Manganese in the Formation, Diagnosis and Treatment of Cervical, Endometrial and Ovarian Cancer.

Int J Mol Sci. 2023-6-29

[9]
Recent Advances on Affibody- and DARPin-Conjugated Nanomaterials in Cancer Therapy.

Int J Mol Sci. 2023-5-12

[10]
Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics.

J Nanobiotechnology. 2021-11-24

本文引用的文献

[1]
Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering.

J Nanobiotechnology. 2021-1-19

[2]
Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate statins for alleviating atherosclerosis.

J Nanobiotechnology. 2020-12-7

[3]
NIR light responsive core-shell nanocontainers for drug delivery.

J Mater Chem B. 2015-9-21

[4]
Active Targeting of Dendritic Polyglycerols for Diagnostic Cancer Imaging.

Small. 2020-2

[5]
Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine.

ACS Nano. 2019-8-5

[6]
Nanocatalytic Medicine.

Adv Mater. 2019-7-22

[7]
Biomimetic Hybrid Nanozymes with Self-Supplied H and Accelerated O Generation for Enhanced Starvation and Photodynamic Therapy against Hypoxic Tumors.

Nano Lett. 2019-6-11

[8]
A Mesoporous Nanoenzyme Derived from Metal-Organic Frameworks with Endogenous Oxygen Generation to Alleviate Tumor Hypoxia for Significantly Enhanced Photodynamic Therapy.

Adv Mater. 2019-5-16

[9]
Versatile Nanoemulsion Assembly Approach to Synthesize Functional Mesoporous Carbon Nanospheres with Tunable Pore Sizes and Architectures.

J Am Chem Soc. 2019-4-17

[10]
Modulation of pericytes by a fusion protein comprising of a PDGFRβ-antagonistic affibody and TNFα induces tumor vessel normalization and improves chemotherapy.

J Control Release. 2019-3-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索