文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于苏木精-伊红染色病理图像分类的分割注意力网络

Divide-and-Attention Network for HE-Stained Pathological Image Classification.

作者信息

Yan Rui, Yang Zhidong, Li Jintao, Zheng Chunhou, Zhang Fa

机构信息

High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100045, China.

University of Chinese Academy of Sciences, Beijing 101408, China.

出版信息

Biology (Basel). 2022 Jun 29;11(7):982. doi: 10.3390/biology11070982.


DOI:10.3390/biology11070982
PMID:36101363
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9311575/
Abstract

Since pathological images have some distinct characteristics that are different from natural images, the direct application of a general convolutional neural network cannot achieve good classification performance, especially for fine-grained classification problems (such as pathological image grading). Inspired by the clinical experience that decomposing a pathological image into different components is beneficial for diagnosis, in this paper, we propose a ivide-and-ttention work () for Hematoxylin-and-Eosin (HE)-stained pathological image classification. The DANet utilizes a deep-learning method to decompose a pathological image into nuclei and non-nuclei parts. With such decomposed pathological images, the DANet first performs feature learning independently in each branch, and then focuses on the most important feature representation through the branch selection attention module. In this way, the DANet can learn representative features with respect to different tissue structures and adaptively focus on the most important ones, thereby improving classification performance. In addition, we introduce deep canonical correlation analysis (DCCA) constraints in the feature fusion process of different branches. The DCCA constraints play the role of branch fusion attention, so as to maximize the correlation of different branches and ensure that the fused branches emphasize specific tissue structures. The experimental results of three datasets demonstrate the superiority of the DANet, with an average classification accuracy of 92.5% on breast cancer classification, 95.33% on colorectal cancer grading, and 91.6% on breast cancer grading tasks.

摘要

由于病理图像具有一些与自然图像不同的独特特征,直接应用通用卷积神经网络无法取得良好的分类性能,尤其是对于细粒度分类问题(如病理图像分级)。受将病理图像分解为不同成分有利于诊断的临床经验启发,本文提出了一种用于苏木精-伊红(HE)染色病理图像分类的“分割与注意力”工作(DANet)。DANet利用深度学习方法将病理图像分解为细胞核和非细胞核部分。对于这样分解后的病理图像,DANet首先在每个分支中独立进行特征学习,然后通过分支选择注意力模块聚焦于最重要的特征表示。通过这种方式,DANet可以学习关于不同组织结构的代表性特征,并自适应地聚焦于最重要的特征,从而提高分类性能。此外,我们在不同分支的特征融合过程中引入了深度典型相关分析(DCCA)约束。DCCA约束起到分支融合注意力的作用,以最大化不同分支的相关性,并确保融合后的分支强调特定的组织结构。三个数据集的实验结果证明了DANet的优越性,在乳腺癌分类任务上平均分类准确率为92.5%,在结直肠癌分级任务上为95.33%,在乳腺癌分级任务上为91.6%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/1ef5f65ad6c0/biology-11-00982-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/92c0bd5ecda5/biology-11-00982-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/a040a305a1c4/biology-11-00982-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/e62946404e9a/biology-11-00982-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/276f11429773/biology-11-00982-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/550f8f8958e7/biology-11-00982-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/330cb4385016/biology-11-00982-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/1ef5f65ad6c0/biology-11-00982-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/92c0bd5ecda5/biology-11-00982-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/a040a305a1c4/biology-11-00982-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/e62946404e9a/biology-11-00982-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/276f11429773/biology-11-00982-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/550f8f8958e7/biology-11-00982-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/330cb4385016/biology-11-00982-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f0/9311575/1ef5f65ad6c0/biology-11-00982-g007.jpg

相似文献

[1]
Divide-and-Attention Network for HE-Stained Pathological Image Classification.

Biology (Basel). 2022-6-29

[2]
Nuclei-Guided Network for Breast Cancer Grading in HE-Stained Pathological Images.

Sensors (Basel). 2022-5-27

[3]
A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images.

Comput Biol Med. 2022-8

[4]
Richer fusion network for breast cancer classification based on multimodal data.

BMC Med Inform Decis Mak. 2021-4-22

[5]
Feature relocation network for fine-grained image classification.

Neural Netw. 2023-4

[6]
MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning.

Comput Methods Programs Biomed. 2024-8

[7]
Convolutional neural network with parallel convolution scale attention module and ResCBAM for breast histology image classification.

Heliyon. 2024-5-8

[8]
Fine-grained image classification method based on hybrid attention module.

Front Neurorobot. 2024-5-3

[9]
Parallel Structure Deep Neural Network Using CNN and RNN with an Attention Mechanism for Breast Cancer Histology Image Classification.

Cancers (Basel). 2019-11-29

[10]
A mutual reconstruction network model for few-shot classification of histological images: addressing interclass similarity and intraclass diversity.

Quant Imaging Med Surg. 2024-8-1

引用本文的文献

[1]
Icariin Ameliorates Cyclophosphamide-Induced Renal Encephalopathy by Modulating the NF-κB and Keap1-Nrf2 Signaling Pathways.

Int J Mol Sci. 2025-5-19

[2]
Tissue classification and diagnosis of colorectal cancer histopathology images using deep learning algorithms. Is the time ripe for clinical practice implementation?

Prz Gastroenterol. 2023

本文引用的文献

[1]
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.

Proc IEEE Inst Electr Electron Eng. 2021-5

[2]
Nuclei-Guided Network for Breast Cancer Grading in HE-Stained Pathological Images.

Sensors (Basel). 2022-5-27

[3]
Sensor drift fault diagnosis for chiller system using deep recurrent canonical correlation analysis and k-nearest neighbor classifier.

ISA Trans. 2022-3

[4]
Deep learning in digital pathology image analysis: a survey.

Front Med. 2020-8

[5]
Context-Aware Convolutional Neural Network for Grading of Colorectal Cancer Histology Images.

IEEE Trans Med Imaging. 2020-7

[6]
Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images.

Med Image Anal. 2019-9-18

[7]
BACH: Grand challenge on breast cancer histology images.

Med Image Anal. 2019-5-31

[8]
Breast cancer histopathological image classification using a hybrid deep neural network.

Methods. 2019-6-15

[9]
Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module.

PLoS One. 2019-3-29

[10]
Glandular Morphometrics for Objective Grading of Colorectal Adenocarcinoma Histology Images.

Sci Rep. 2017-12-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索