Suppr超能文献

基于复合多尺度加权排列熵的滚动轴承诊断

Rolling Bearing Diagnosis Based on Composite Multiscale Weighted Permutation Entropy.

作者信息

Gan Xiong, Lu Hong, Yang Guangyou, Liu Jing

机构信息

School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China.

Institute of Agricultural Machinery, Hubei University of Technology, Wuhan 430068, China.

出版信息

Entropy (Basel). 2018 Oct 24;20(11):821. doi: 10.3390/e20110821.

Abstract

In this paper, composite multiscale weighted permutation entropy (CMWPE) is proposed to evaluate the complexity of nonlinear time series, and the advantage of the CMWPE method is verified through analyzing the simulated signal. Meanwhile, considering the complex nonlinear dynamic characteristics of fault rolling bearing signal, a rolling bearing fault diagnosis approach based on CMWPE, joint mutual information (JMI) feature selection, and k-nearest-neighbor (KNN) classifier (CMWPE-JMI-KNN) is proposed. For CMWPE-JMI-KNN, CMWPE is utilized to extract the fault rolling bearing features, JMI is applied for sensitive features selection, and KNN classifier is employed for identifying different rolling bearing conditions. Finally, the proposed CMWPE-JMI-KNN approach is used to analyze the experimental dataset, the analysis results indicate the proposed approach could effectively identify different fault rolling bearing conditions.

摘要

本文提出了复合多尺度加权排列熵(CMWPE)来评估非线性时间序列的复杂性,并通过对模拟信号的分析验证了CMWPE方法的优势。同时,考虑到滚动轴承故障信号复杂的非线性动态特性,提出了一种基于CMWPE、联合互信息(JMI)特征选择和k近邻(KNN)分类器的滚动轴承故障诊断方法(CMWPE-JMI-KNN)。对于CMWPE-JMI-KNN,利用CMWPE提取滚动轴承故障特征,应用JMI进行敏感特征选择,采用KNN分类器识别不同的滚动轴承状态。最后,将所提出的CMWPE-JMI-KNN方法用于分析实验数据集,分析结果表明该方法能够有效识别不同的滚动轴承故障状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd39/7512383/993e804b7f23/entropy-20-00821-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验