Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA.
Microbial Sciences Institute, Yale University, New Haven, CT, USA.
Nat Ecol Evol. 2021 Jul;5(7):1011-1023. doi: 10.1038/s41559-021-01457-5. Epub 2021 May 13.
Directed evolution has been used for decades to engineer biological systems at or below the organismal level. Above the organismal level, a small number of studies have attempted to artificially select microbial ecosystems, with uneven and generally modest success. Our theoretical understanding of artificial ecosystem selection is limited, particularly for large assemblages of asexual organisms, and we know little about designing efficient methods to direct their evolution. Here, we have developed a flexible modelling framework that allows us to systematically probe any arbitrary selection strategy on any arbitrary set of communities and selected functions. By artificially selecting hundreds of in silico microbial metacommunities under identical conditions, we first show that the main breeding methods used to date, which do not necessarily let communities reach their ecological equilibrium, are outperformed by a simple screen of sufficiently mature communities. We then identify a range of alternative directed evolution strategies that, particularly when applied in combination, are well suited for the top-down engineering of large, diverse and stable microbial consortia. Our results emphasize that directed evolution allows an ecological structure-function landscape to be navigated in search of dynamically stable and ecologically resilient communities with desired quantitative attributes.
定向进化已被用于数十年,以在生物系统的个体水平或以下进行工程设计。在个体水平以上,少数研究试图人为选择微生物生态系统,但成功率参差不齐,通常较低。我们对人工生态系统选择的理论理解是有限的,特别是对于大量无性生物的集合,并且我们几乎不知道如何设计有效的方法来指导它们的进化。在这里,我们开发了一个灵活的建模框架,使我们能够在任何任意的群落和选择功能集上系统地探测任何任意的选择策略。通过在相同条件下人为选择数百种计算机模拟的微生物复合群落,我们首先表明,迄今为止使用的主要繁殖方法(不一定使群落达到生态平衡)不如简单筛选足够成熟的群落表现出色。然后,我们确定了一系列替代的定向进化策略,特别是当它们结合使用时,非常适合对大型、多样和稳定的微生物联合体进行自上而下的工程设计。我们的研究结果强调,定向进化允许在生态结构-功能景观中进行导航,以寻找具有所需定量属性的动态稳定和具有生态弹性的群落。