Xie Enze, Wang Wenhai, Ding Mingyu, Zhang Ruimao, Luo Ping
IEEE Trans Pattern Anal Mach Intell. 2021 May 14;PP. doi: 10.1109/TPAMI.2021.3080324.
Reducing complexity of the pipeline of instance segmentation is crucial for real-world applications. This work addresses this problem by introducing an anchor-box free and single-shot instance segmentation framework, termed PolarMask++, which reformulates the instance segmentation problem as predicting the contours of objects in the polar coordinate, leading to several appealing benefits. (1) The polar representation unifies instance segmentation (masks) and object detection (bounding boxes) into a single framework, reducing the design and computational complexity. (2) We carefully design two modules (soft polar centerness and polar IoU loss) to sample high-quality center examples and optimize polar contour regression, making the performance of PolarMask++ does not depend on the bounding box prediction and thus more efficient in training. (3) PolarMask++ is fully convolutional and can be easily embedded into most off-the-shelf detectors. To further improve the accuracy of the framework, a Refined Feature Pyramid is introduced to improve the feature representation at different scales. Extensive experiments demonstrate the effectiveness of PolarMask++, which achieves competitive results on COCO dataset, and new state-of-the-art results on text detection and cell segmentation datasets. We hope polar representation can provide a new perspective for designing algorithms to solve single-shot instance segmentation. Code is released at: github.com/xieenze/PolarMask.
降低实例分割流程的复杂度对于实际应用至关重要。这项工作通过引入一个无锚框且单阶段的实例分割框架PolarMask++来解决这个问题,该框架将实例分割问题重新表述为在极坐标中预测物体的轮廓,带来了几个吸引人的优点。(1)极坐标表示将实例分割(掩码)和目标检测(边界框)统一到一个单一框架中,降低了设计和计算复杂度。(2)我们精心设计了两个模块(软极坐标中心度和极坐标IoU损失)来采样高质量的中心示例并优化极坐标轮廓回归,使得PolarMask++的性能不依赖于边界框预测,从而在训练中更高效。(3)PolarMask++是全卷积的,并且可以很容易地嵌入到大多数现成的检测器中。为了进一步提高框架的准确性,引入了一个精细特征金字塔来改进不同尺度下的特征表示。大量实验证明了PolarMask++的有效性,它在COCO数据集上取得了有竞争力的结果,并且在文本检测和细胞分割数据集上取得了新的最优结果。我们希望极坐标表示能够为设计解决单阶段实例分割的算法提供一个新的视角。代码发布在:github.com/xieenze/PolarMask 。