IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2523-2532. doi: 10.1109/TCBB.2021.3080295. Epub 2022 Aug 8.
Recently, digital pathology image-based prognosis prediction has become a hot topic in healthcare research to make early decisions on therapy and improve the treatment quality of patients. Therefore, there has been a recent surge of interest in designing deep learning method solving the problem of prognosis prediction with digital pathology images. However, whole slide histopathological images (WSIs) based prognosis prediction is still a challenge due to the large size of pathological images, the heterogeneity of tumors and the high cost of region of interests (ROIs) labeling. In this study, we design a novel two-stage deep learning framework for prognosis prediction (TSDLPP) based on WSIs. Our proposed framework consists of two-stage paradigms: 1) training tissue decomposition network (TDNet) to divide WSIs into cancerous and non-cancerous regions, 2) integrating general prognosis-related densely connected CNN (GPR-DCCNN) and morphology-specific prognosis-related densely connected CNNs (MSPR-DCCNNs) to extract different level features of pathological images. In the end, we apply TSDLPP to the prognosis prediction of breast cancer using The Cancer Genome Atlas (TCGA) datasets. Experiment results demonstrate that TSDLPP obtains superior performance of prognosis prediction compared with the existing state-of-arts methods.
最近,基于数字病理学图像的预后预测已成为医疗保健研究的热门话题,旨在对治疗做出早期决策并提高患者的治疗质量。因此,人们对设计基于深度学习方法解决数字病理学图像预后预测问题产生了浓厚的兴趣。然而,由于病理图像的尺寸较大、肿瘤的异质性以及感兴趣区域(ROI)标记的成本较高,基于全切片组织学图像(WSIs)的预后预测仍然是一个挑战。在本研究中,我们设计了一种基于 WSIs 的用于预后预测的新型两阶段深度学习框架(TSDLPP)。我们提出的框架由两阶段范式组成:1)训练组织分解网络(TDNet)将 WSIs 分为癌性和非癌性区域,2)集成通用预后相关密集连接 CNN(GPR-DCCNN)和形态学特异性预后相关密集连接 CNNs(MSPR-DCCNNs),以提取病理图像的不同层次特征。最后,我们将 TSDLPP 应用于使用癌症基因组图谱(TCGA)数据集的乳腺癌预后预测。实验结果表明,与现有的最先进方法相比,TSDLPP 获得了优越的预后预测性能。