Suppr超能文献

基于深度学习的原发性全切片图像肾细胞癌患者淋巴结转移的病理预测。

Deep learning-based pathological prediction of lymph node metastasis for patient with renal cell carcinoma from primary whole slide images.

机构信息

Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

J Transl Med. 2024 Jun 14;22(1):568. doi: 10.1186/s12967-024-05382-6.

Abstract

BACKGROUND

Metastasis renal cell carcinoma (RCC) patients have extremely high mortality rate. A predictive model for RCC micrometastasis based on pathomics could be beneficial for clinicians to make treatment decisions.

METHODS

A total of 895 formalin-fixed and paraffin-embedded whole slide images (WSIs) derived from three cohorts, including Shanghai General Hospital (SGH), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and Cancer Genome Atlas (TCGA) cohorts, and another 588 frozen section WSIs from TCGA dataset were involved in the study. The deep learning-based strategy for predicting lymphatic metastasis was developed based on WSIs through clustering-constrained-attention multiple-instance learning method and verified among the three cohorts. The performance of the model was further verified in frozen-pathological sections. In addition, the model was also tested the prognosis prediction of patients with RCC in multi-source patient cohorts.

RESULTS

The AUC of the lymphatic metastasis prediction performance was 0.836, 0.865 and 0.812 in TCGA, SGH and CPTAC cohorts, respectively. The performance on frozen section WSIs was with the AUC of 0.801. Patients with high deep learning-based prediction of lymph node metastasis values showed worse prognosis.

CONCLUSIONS

In this study, we developed and verified a deep learning-based strategy for predicting lymphatic metastasis from primary RCC WSIs, which could be applied in frozen-pathological sections and act as a prognostic factor for RCC to distinguished patients with worse survival outcomes.

摘要

背景

转移性肾细胞癌(RCC)患者的死亡率极高。基于病理组学的 RCC 微转移预测模型可能有助于临床医生做出治疗决策。

方法

本研究共纳入了来自三个队列的 895 张福尔马林固定和石蜡包埋的全切片图像(WSIs),包括上海总医院(SGH)、临床蛋白质组肿瘤分析联盟(CPTAC)和癌症基因组图谱(TCGA)队列,以及来自 TCGA 数据集的另外 588 张冷冻切片 WSIs。通过聚类约束注意力多实例学习方法,基于 WSIs 开发了用于预测淋巴转移的深度学习策略,并在三个队列中进行了验证。该模型的性能在冷冻病理切片中得到了进一步验证。此外,该模型还在多源患者队列中测试了 RCC 患者的预后预测。

结果

在 TCGA、SGH 和 CPTAC 队列中,该模型对淋巴转移预测性能的 AUC 分别为 0.836、0.865 和 0.812。在冷冻切片 WSIs 上的性能 AUC 为 0.801。深度学习预测的淋巴结转移值较高的患者预后较差。

结论

本研究开发并验证了一种基于深度学习的预测原发性 RCC WSIs 淋巴转移的策略,该策略可应用于冷冻病理切片,并作为 RCC 的预后因素,以区分生存结局较差的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd95/11177484/82a659b575b1/12967_2024_5382_Fig4_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验