Suppr超能文献

MCDCD:用于异常步态检测的多源无监督领域自适应

MCDCD: Multi-Source Unsupervised Domain Adaptation for Abnormal Human Gait Detection.

出版信息

IEEE J Biomed Health Inform. 2021 Oct;25(10):4017-4028. doi: 10.1109/JBHI.2021.3080502. Epub 2021 Oct 5.

Abstract

For gait analysis, especially for the detection of subtle gait abnormalities, the collected datasets involve high variability across subjects due to inherent biometric traits and movement behaviors, leading to limited detection accuracy and poor generalizability. To address this, we propose a novel deep multi-source Unsupervised Domain Adaptation (UDA) approach, namely Maximum Cross-Domain Classifier Discrepancy (MCDCD), which aims to improve the classification performance on the test subject (target domain) by leveraging the information from multiple labelled training subjects (source domains). Specifically, the proposed model consists of a feature extractor and a domain-specific category classifier per source domain. The former feature extractor learns to generate discriminative gait features. For the latter classifiers, we minimize the cross-entropy loss to accurately classify source samples, and simultaneously maximize a novel cross-domain discrepancy loss between any two category classifiers to minimize domain shift between multiple sources and the target domain. To validate the proposed MCDCD for detecting gait abnormalities on novel subjects, we collected both high-quality Motion capture (Mocap) and noisy Electromyography (EMG) data from eighteen subjects with both normal and imitated abnormal gaits. Experiment results using both data modalities demonstrate that the proposed approach can achieve superior performance in abnormal gait classification compared to baseline deep models and state-of-the-art UDA methods.

摘要

对于步态分析,特别是对于检测细微的步态异常,由于固有的生物特征和运动行为,所收集的数据集在不同受试者之间存在很大的可变性,导致检测精度有限且泛化能力差。针对这一问题,我们提出了一种新颖的深度多源无监督域自适应(UDA)方法,即最大跨域分类器差异(MCDCD),旨在通过利用多个标记训练受试者(源域)的信息来提高对测试受试者(目标域)的分类性能。具体来说,所提出的模型由每个源域的特征提取器和特定于域的类别分类器组成。前者特征提取器学习生成有区别的步态特征。对于后者分类器,我们最小化交叉熵损失以准确地对源样本进行分类,同时最大化任意两个类别分类器之间的新的跨域差异损失,以最小化多个源域和目标域之间的域偏移。为了验证所提出的 MCDCD 用于检测新受试者的步态异常,我们从十八名具有正常和模仿异常步态的受试者中同时收集了高质量的运动捕捉(Mocap)和嘈杂的肌电图(EMG)数据。使用两种数据模式的实验结果表明,与基线深度模型和最先进的 UDA 方法相比,所提出的方法在异常步态分类方面可以实现卓越的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验