Suppr超能文献

基于深度表示的非平稳 EEG 分类领域自适应方法。

Deep Representation-Based Domain Adaptation for Nonstationary EEG Classification.

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):535-545. doi: 10.1109/TNNLS.2020.3010780. Epub 2021 Feb 4.

Abstract

In the context of motor imagery, electroencephalography (EEG) data vary from subject to subject such that the performance of a classifier trained on data of multiple subjects from a specific domain typically degrades when applied to a different subject. While collecting enough samples from each subject would address this issue, it is often too time-consuming and impractical. To tackle this problem, we propose a novel end-to-end deep domain adaptation method to improve the classification performance on a single subject (target domain) by taking the useful information from multiple subjects (source domain) into consideration. Especially, the proposed method jointly optimizes three modules, including a feature extractor, a classifier, and a domain discriminator. The feature extractor learns the discriminative latent features by mapping the raw EEG signals into a deep representation space. A center loss is further employed to constrain an invariant feature space and reduce the intrasubject nonstationarity. Furthermore, the domain discriminator matches the feature distribution shift between source and target domains by an adversarial learning strategy. Finally, based on the consistent deep features from both domains, the classifier is able to leverage the information from the source domain and accurately predict the label in the target domain at the test time. To evaluate our method, we have conducted extensive experiments on two real public EEG data sets, data set IIa, and data set IIb of brain-computer interface (BCI) Competition IV. The experimental results validate the efficacy of our method. Therefore, our method is promising to reduce the calibration time for the use of BCI and promote the development of BCI.

摘要

在运动想象的背景下,脑电图 (EEG) 数据因个体而异,因此,在特定领域中,基于多个个体的数据训练的分类器在应用于不同个体时,性能通常会下降。虽然从每个个体收集足够的样本可以解决这个问题,但这通常过于耗时且不切实际。为了解决这个问题,我们提出了一种新颖的端到端深度域自适应方法,通过考虑来自多个个体(源域)的有用信息,来提高单个个体(目标域)的分类性能。特别是,所提出的方法联合优化了三个模块,包括特征提取器、分类器和域鉴别器。特征提取器通过将原始 EEG 信号映射到深度表示空间来学习具有区分性的潜在特征。进一步采用中心损失来约束不变的特征空间并减少个体内的非平稳性。此外,域鉴别器通过对抗学习策略来匹配源域和目标域之间的特征分布偏移。最后,基于来自两个域的一致的深度特征,分类器能够利用源域的信息,并在测试时准确地预测目标域的标签。为了评估我们的方法,我们在两个真实的公共 EEG 数据集(脑机接口 (BCI) 竞赛四的数据集 IIa 和数据集 IIb)上进行了广泛的实验。实验结果验证了我们方法的有效性。因此,我们的方法有望减少 BCI 的校准时间,促进 BCI 的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验