Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA.
Geobiology. 2021 Sep;19(5):450-459. doi: 10.1111/gbi.12448. Epub 2021 May 14.
The ability of aerobic microorganisms to regulate internal and external concentrations of the reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous enzymes that perform the same function. Thus, the evolutionary history of genes encoding for different SOD enzymes is one of convergent evolution, which reflects environmental selection brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic horizontal gene transfer (HGT). In this study, we examine the phylogenetic history of the protein sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). The genomic potential to produce SodN is widespread among bacteria, including Actinobacteriota (Actinobacteria), Chloroflexota (Chloroflexi), Cyanobacteria, Proteobacteria, Patescibacteria, and others. The gene is also present in many archaea, with Thermoplasmatota and Nanoarchaeota representing the vast majority of archaeal sodN diversity. A comparison of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain. Nearly half of the archaeal members with sodN live in the photic zone of the marine water column. The sodN gene is widespread and characterized by apparent vertical gene transfer in some sediment- or soil-associated lineages within the Actinobacteriota and Chloroflexota phyla, suggesting the ancestral sodN likely originated in one of these clades before expanding its taxonomic and biogeographic distribution to additional microbial groups in the surface ocean in response to decreasing iron availability. In addition to decreasing iron quotas, nickel-binding SOD has the added benefit of withstanding high reactant and product ROS concentrations without damaging the enzyme, making it particularly well suited for the modern surface ocean.
需氧微生物调节活性氧(ROS)超氧化物内外浓度的能力直接影响细胞的健康和活力。超氧化物歧化酶(SOD)是微生物用来降解超氧化物的主要调节酶。SOD 不是一种,而是三种不同的、非同源的酶,它们执行相同的功能。因此,编码不同 SOD 酶的基因的进化历史是趋同进化的一个例子,这反映了含氧大气、金属可用性变化和机会性水平基因转移(HGT)带来的环境选择。在这项研究中,我们研究了编码 SOD 酶镍结合金属形式的蛋白质序列的系统发育历史。产生 SodN 的基因组潜力在细菌中广泛存在,包括放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)、蓝细菌门(Cyanobacteria)、变形菌门(Proteobacteria)、Patescibacteria 门和其他门。该基因也存在于许多古菌中,其中 Thermoplasmatota 和 Nanoarchaeota 代表了绝大多数古菌 sodN 多样性。对生物和 SodN 蛋白质系统发育树的比较揭示了几次 HGT 事件,包括从细菌域到古菌域的 sodN 基因的多次跨域转移。带有 sodN 的近一半古菌成员生活在海洋水柱的透光带中。sodN 基因广泛存在,并在 Actinobacteriota 和 Chloroflexota 门内的一些与沉积物或土壤相关的谱系中表现出明显的垂直基因转移,这表明祖先 sodN 可能起源于这些进化枝之一,然后在铁供应减少的情况下,其分类和生物地理分布扩展到海洋表面的其他微生物群。除了降低铁配额外,镍结合 SOD 的另一个好处是能够承受高反应物和产物 ROS 浓度而不损害酶,使其特别适合现代海洋表面。