Vuillemin Aurèle, Ruiz-Blas Fatima, Yang Sizhong, Bartholomäus Alexander, Henny Cynthia, Kallmeyer Jens
GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.
Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN), Cibinong, 16911 Jawa Barat, Indonesia.
FEMS Microbiol Ecol. 2024 Nov 23;100(12). doi: 10.1093/femsec/fiae140.
The adaptation of the phylum Chloroflexota to various geochemical conditions is thought to have originated in primitive microbial ecosystems, involving hydrogenotrophic energy conservation under ferruginous anoxia. Oligotrophic deep waters displaying anoxic ferruginous conditions, such as those of Lake Towuti, and their sediments may thus constitute a preferential ecological niche for investigating metabolic versatility in modern Chloroflexota. Combining pore water geochemistry, cell counts, sulfate reduction rates, and 16S rRNA genes with in-depth analysis of metagenome-assembled genomes, we show that Chloroflexota benefit from cross-feeding on metabolites derived from canonical respiration chains and fermentation. Detailing their genetic contents, we provide molecular evidence that Anaerolineae have metabolic potential to use unconventional electron acceptors, different cytochromes, and multiple redox metalloproteins to cope with oxygen fluctuations, and thereby effectively colonizing the ferruginous sediment-water interface. In sediments, Dehalococcoidia evolved to be acetogens, scavenging fatty acids, haloacids, and aromatic acids, apparently bypassing specific steps in carbon assimilation pathways to perform energy-conserving secondary fermentations combined with CO2 fixation via the Wood-Ljungdahl pathway. Our study highlights the partitioning of Chloroflexota populations according to alternative electron acceptors and donors available at the sediment-water interface and below. Chloroflexota would have developed analogous primeval features due to oxygen fluctuations in ancient ferruginous ecosystems.
绿弯菌门对各种地球化学条件的适应性被认为起源于原始微生物生态系统,涉及在铁质缺氧条件下的氢营养型能量守恒。因此,呈现缺氧铁质条件的贫营养深水,如托武蒂湖及其沉积物,可能构成了研究现代绿弯菌门代谢多样性的优先生态位。我们将孔隙水地球化学、细胞计数、硫酸盐还原率和16S rRNA基因与对宏基因组组装基因组的深入分析相结合,表明绿弯菌门受益于对源自经典呼吸链和发酵的代谢物的交叉利用。在详细阐述它们的基因内容时,我们提供了分子证据,即厌氧绳菌纲具有利用非常规电子受体、不同细胞色素和多种氧化还原金属蛋白来应对氧气波动的代谢潜力,从而有效地定殖于铁质沉积物 - 水界面。在沉积物中,脱卤球菌纲进化为产乙酸菌,清除脂肪酸、卤代酸和芳香酸,显然绕过了碳同化途径中的特定步骤,以通过伍德 - Ljungdahl途径进行能量守恒的二次发酵并结合二氧化碳固定。我们的研究强调了绿弯菌门种群根据沉积物 - 水界面及以下可利用的替代电子受体和供体进行的划分。由于古代铁质生态系统中的氧气波动,绿弯菌门可能发展出了类似的原始特征。