对人类应激诊断的监督学习和软计算技术的全面回顾和分析。
A comprehensive review and analysis of supervised-learning and soft computing techniques for stress diagnosis in humans.
机构信息
Department of Comp. Sc., GNDU, India.
Department of CSA, DAVU, India.
出版信息
Comput Biol Med. 2021 Jul;134:104450. doi: 10.1016/j.compbiomed.2021.104450. Epub 2021 May 5.
Stress is the most prevailing and global psychological condition that inevitably disrupts the mood and behavior of individuals. Chronic stress may gravely affect the physical, mental, and social behavior of victims and consequently induce myriad critical human disorders. Herein, a review has been presented where supervised learning (SL) and soft computing (SC) techniques used in stress diagnosis have been meticulously investigated to highlight the contributions, strengths, and challenges faced in the implementation of these methods in stress diagnostic models. A three-tier review strategy comprising of manuscript selection, data synthesis, and data analysis was adopted. The issues in SL strategies and the potential possibility of using hybrid techniques in stress diagnosis have been intensively investigated. The strengths and weaknesses of different SL (Bayesian classifier, random forest, support vector machine, and nearest neighbours) and SC (fuzzy logic, nature-inspired, and deep learning) techniques have been presented to obtain clear insights into these optimization strategies. The effects of social, behavioral, and biological stresses have been highlighted. The psychological, biological, and behavioral responses to stress have also been briefly elucidated. The findings of the study confirmed that different types of data/signals (related to skin temperature, electro-dermal activity, blood circulation, heart rate, facial expressions, etc.) have been used in stress diagnosis. Moreover, there is a potential scope for using distinct nature-inspired computing techniques (Genetic Algorithm, Particle Swarm Optimization, Ant Colony Optimization, Whale Optimization Algorithm, Butterfly Optimization, Harris Hawks Optimizer, and Crow Search Algorithm) and deep learning techniques (Deep-Belief Network, Convolutional-Neural Network, and Recurrent-Neural Network) on multimodal data compiled using behavioral testing, electroencephalogram signals, finger temperature, respiration rate, pupil diameter, galvanic-skin-response, and blood pressure. Likewise, there is a wider scope to investigate the use of SL and SC techniques in stress diagnosis using distinct dimensions such as sentiment analysis, speech recognition, handwriting recognition, and facial expressions. Finally, a hybrid model based on distinct computational methods influenced by both SL and SC techniques, adaption, parameter tuning, and the use of chaos, levy, and Gaussian distribution may address exploration and exploitation issues. However, factors such as real-time data collection, bias, integrity, multi-dimensional data, and data privacy make it challenging to design precise and innovative stress diagnostic systems based on artificial intelligence.
压力是最普遍和全球性的心理状况,不可避免地会扰乱个人的情绪和行为。慢性压力可能严重影响受害者的身体、心理和社会行为,并因此导致无数严重的人类疾病。在此,我们进行了一项综述,仔细研究了监督学习 (SL) 和软计算 (SC) 技术在压力诊断中的应用,以突出这些方法在压力诊断模型中的实施所做出的贡献、优势和面临的挑战。采用了包括手稿选择、数据综合和数据分析的三级审查策略。深入研究了 SL 策略中的问题以及在压力诊断中使用混合技术的潜在可能性。介绍了不同的 SL(贝叶斯分类器、随机森林、支持向量机和最近邻)和 SC(模糊逻辑、受自然启发和深度学习)技术的优势和弱点,以深入了解这些优化策略。强调了社会、行为和生物压力的影响。还简要阐明了对压力的心理、生理和行为反应。研究结果证实,不同类型的数据/信号(与皮肤温度、皮肤电活动、血液循环、心率、面部表情等有关)已用于压力诊断。此外,使用不同的受自然启发的计算技术(遗传算法、粒子群优化、蚁群优化、鲸鱼优化算法、蝴蝶优化算法、哈里斯鹰优化算法和乌鸦搜索算法)和深度学习技术(深度置信网络、卷积神经网络和递归神经网络)对使用行为测试、脑电图信号、手指温度、呼吸率、瞳孔直径、皮肤电反应和血压编译的多模态数据进行压力诊断具有潜在的应用前景。同样,有更广泛的范围可以研究使用不同的维度(如情感分析、语音识别、手写识别和面部表情)在压力诊断中使用 SL 和 SC 技术。最后,一种基于受 SL 和 SC 技术、自适应、参数调整以及混沌、莱维和高斯分布影响的混合模型可能会解决探索和利用的问题。然而,实时数据收集、偏差、完整性、多维数据和数据隐私等因素使得基于人工智能设计精确和创新的压力诊断系统具有挑战性。