Suppr超能文献

泛素化在 DNA 双链断裂修复中的作用。

Ubiquitylation in DNA double-strand break repair.

机构信息

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

DNA Repair (Amst). 2021 Jul;103:103129. doi: 10.1016/j.dnarep.2021.103129. Epub 2021 May 7.

Abstract

Genome integrity is constantly challenged by various DNA lesions with DNA double-strand breaks (DSBs) as the most cytotoxic lesions. In order to faithfully repair DSBs, DNA damage response (DDR) signaling networks have evolved, which organize many multi-protein complexes to deal with the encountered DNA damage. Spatiotemporal dynamics of these protein complexes at DSBs are mainly modulated by post-translational modifications (PTMs). One of the most well-studied PTMs in DDR is ubiquitylation which can orchestrate cellular responses to DSBs, promote accurate DNA repair, and maintain genome integrity. Here, we summarize the recent advances of ubiquitin-dependent signaling in DDR and discuss how ubiquitylation crosstalks with other PTMs to control fundamental biological processes in DSB repair.

摘要

基因组完整性不断受到各种 DNA 损伤的挑战,其中 DNA 双链断裂 (DSB) 是最具细胞毒性的损伤。为了忠实地修复 DSB,已经进化出 DNA 损伤反应 (DDR) 信号网络,该网络组织了许多多蛋白复合物来处理遇到的 DNA 损伤。这些蛋白质复合物在 DSB 处的时空动态主要由翻译后修饰 (PTM) 调节。DDR 中研究最多的 PTM 之一是泛素化,它可以协调细胞对 DSB 的反应,促进 DNA 修复的准确性,并维持基因组的完整性。在这里,我们总结了 DDR 中泛素依赖性信号的最新进展,并讨论了泛素化如何与其他 PTM 相互作用来控制 DSB 修复中的基本生物学过程。

相似文献

1
Ubiquitylation in DNA double-strand break repair.
DNA Repair (Amst). 2021 Jul;103:103129. doi: 10.1016/j.dnarep.2021.103129. Epub 2021 May 7.
2
Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
Mutat Res Genet Toxicol Environ Mutagen. 2021 Jul;867:503372. doi: 10.1016/j.mrgentox.2021.503372. Epub 2021 Jun 12.
3
Balancing act: To be, or not to be ubiquitylated.
Mutat Res. 2017 Oct;803-805:43-50. doi: 10.1016/j.mrfmmm.2017.07.006. Epub 2017 Jul 21.
5
Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks.
Cells. 2020 Jul 16;9(7):1699. doi: 10.3390/cells9071699.
8
How cells ensure correct repair of DNA double-strand breaks.
J Biol Chem. 2018 Jul 6;293(27):10502-10511. doi: 10.1074/jbc.TM118.000371. Epub 2018 Feb 5.
9
Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks.
DNA Repair (Amst). 2020 Sep;93:102915. doi: 10.1016/j.dnarep.2020.102915.
10
[Repair pathways in response to DNA double-strand breaks].
Sheng Li Ke Xue Jin Zhan. 2007 Oct;38(4):295-300.

引用本文的文献

1
Latest Advancements of Natural Products in Combating Ovarian Cancer.
J Cancer. 2025 Jul 28;16(11):3497-3512. doi: 10.7150/jca.118209. eCollection 2025.
2
VGLL3 modulates chemosensitivity through promoting DNA double-strand break repair.
Sci Adv. 2024 Oct 11;10(41):eadr2643. doi: 10.1126/sciadv.adr2643. Epub 2024 Oct 9.
3
Mass Spectral Feature Analysis of Ubiquitylated Peptides Provides Insights into Probing the Dark Ubiquitylome.
J Am Soc Mass Spectrom. 2024 Dec 4;35(12):2849-2858. doi: 10.1021/jasms.4c00213. Epub 2024 Sep 27.
4
E3 ligases: a ubiquitous link between DNA repair, DNA replication and human disease.
Biochem J. 2024 Jul 17;481(14):923-944. doi: 10.1042/BCJ20240124.
5
Crosstalk between ubiquitin ligases and ncRNAs drives cardiovascular disease progression.
Front Immunol. 2024 Mar 7;15:1335519. doi: 10.3389/fimmu.2024.1335519. eCollection 2024.
6
Noval advance of histone modification in inflammatory skin diseases and related treatment methods.
Front Immunol. 2024 Jan 3;14:1286776. doi: 10.3389/fimmu.2023.1286776. eCollection 2023.
8
DNA Damage Response Regulation by Histone Ubiquitination.
Int J Mol Sci. 2022 Jul 25;23(15):8187. doi: 10.3390/ijms23158187.
10
Exploring the Structures and Functions of Macromolecular SLX4-Nuclease Complexes in Genome Stability.
Front Genet. 2021 Nov 4;12:784167. doi: 10.3389/fgene.2021.784167. eCollection 2021.

本文引用的文献

2
The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency.
Cell Rep. 2020 Aug 4;32(5):107985. doi: 10.1016/j.celrep.2020.107985.
3
Endogenous DNA 3' Blocks Are Vulnerabilities for BRCA1 and BRCA2 Deficiency and Are Reversed by the APE2 Nuclease.
Mol Cell. 2020 Jun 18;78(6):1152-1165.e8. doi: 10.1016/j.molcel.2020.05.021. Epub 2020 Jun 8.
4
Genetic determinants of cellular addiction to DNA polymerase theta.
Nat Commun. 2019 Sep 19;10(1):4286. doi: 10.1038/s41467-019-12234-1.
5
Genetic Screens Reveal FEN1 and APEX2 as BRCA2 Synthetic Lethal Targets.
Mol Cell. 2019 Mar 7;73(5):885-899.e6. doi: 10.1016/j.molcel.2018.12.008. Epub 2019 Jan 24.
6
53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ.
Nature. 2018 Aug;560(7716):122-127. doi: 10.1038/s41586-018-0362-1. Epub 2018 Jul 25.
7
The shieldin complex mediates 53BP1-dependent DNA repair.
Nature. 2018 Aug;560(7716):117-121. doi: 10.1038/s41586-018-0340-7. Epub 2018 Jul 18.
8
53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in.
Nature. 2018 Aug;560(7716):112-116. doi: 10.1038/s41586-018-0324-7. Epub 2018 Jul 18.
9
DNA Repair Network Analysis Reveals Shieldin as a Key Regulator of NHEJ and PARP Inhibitor Sensitivity.
Cell. 2018 May 3;173(4):972-988.e23. doi: 10.1016/j.cell.2018.03.050. Epub 2018 Apr 12.
10
L3MBTL2 orchestrates ubiquitin signalling by dictating the sequential recruitment of RNF8 and RNF168 after DNA damage.
Nat Cell Biol. 2018 Apr;20(4):455-464. doi: 10.1038/s41556-018-0071-x. Epub 2018 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验