Rafiq Muhammad, Macías-Díaz J E, Raza Ali, Ahmed Nauman
Faculty of Engineering, University of Central Punjab, Lahore, Pakistan.
Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
Appl Math Model. 2021 Jan;89:1835-1846. doi: 10.1016/j.apm.2020.08.082. Epub 2020 Sep 22.
In this manuscript, we develop a mathematical model to describe the spreading of an epidemic disease in a human population. The emphasis in this work will be on the study of the propagation of the coronavirus disease (COVID-19). Various epidemiologically relevant assumptions will be imposed upon the problem, and a coupled system of first-order ordinary differential equations will be obtained. The model adopts the form of a nonlinear susceptible-exposed-infected-quarantined-recovered system, and we investigate it both analytically and numerically. Analytically, we obtain the equilibrium points in the presence and absence of the coronavirus. We also calculate the reproduction number and provide conditions that guarantee the local and global asymptotic stability of the equilibria. To that end, various tools from analysis will be employed, including Volterra-type Lyapunov functions, LaSalle's invariance principle and the Routh-Hurwitz criterion. To simulate computationally the dynamics of propagation of the disease, we propose a nonstandard finite-difference scheme to approximate the solutions of the mathematical model. A thorough analysis of the discrete model is provided in this work, including the consistency and the stability analyses, along with the capability of the discrete model to preserve the equilibria of the continuous system. Among other interesting results, our numerical simulations confirm the stability properties of the equilibrium points.
在本手稿中,我们建立了一个数学模型来描述传染病在人群中的传播。这项工作的重点将是研究冠状病毒病(COVID - 19)的传播。我们将对该问题施加各种与流行病学相关的假设,并得到一个一阶常微分方程组。该模型采用非线性易感 - 暴露 - 感染 - 隔离 - 康复系统的形式,我们对其进行了分析和数值研究。在分析方面,我们得到了存在和不存在冠状病毒时的平衡点。我们还计算了再生数,并提供了保证平衡点局部和全局渐近稳定性的条件。为此,我们将使用分析中的各种工具,包括沃尔泰拉型李雅普诺夫函数、拉萨尔不变性原理和劳斯 - 赫尔维茨判据。为了通过计算模拟疾病传播的动态过程,我们提出了一种非标准有限差分格式来逼近数学模型的解。本文对离散模型进行了全面分析,包括一致性和稳定性分析,以及离散模型保持连续系统平衡点的能力。在其他有趣的结果中,我们的数值模拟证实了平衡点的稳定性性质。