Suppr超能文献

系统生物学揭示了参与植物基因型对盐胁迫响应的关键组织特异性代谢和转录特征。

Systems biology reveals key tissue-specific metabolic and transcriptional signatures involved in the response of plant genotypes to salt stress.

作者信息

Filippou Panagiota, Zarza Xavier, Antoniou Chrystalla, Obata Toshihiro, Villarroel Carlos A, Ganopoulos Ioannis, Harokopos Vaggelis, Gohari Gholamreza, Aidinis Vassilis, Madesis Panagiotis, Christou Anastasis, Fernie Alisdair R, Tiburcio Antonio F, Fotopoulos Vasileios

机构信息

Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, Limassol, Cyprus.

Department of Natural Products, Plant Biology and Soil Science, University of Barcelona, Barcelona, Spain.

出版信息

Comput Struct Biotechnol J. 2021 Apr 8;19:2133-2147. doi: 10.1016/j.csbj.2021.04.018. eCollection 2021.

Abstract

Salt stress is an important factor limiting plant productivity by affecting plant physiology and metabolism. To explore salt tolerance adaptive mechanisms in the model legume we used three genotypes with differential salt-sensitivity: TN6.18 (highly sensitive), Jemalong A17 (moderately sensitive), and TN1.11 (tolerant). Cellular damage was monitored in roots and leaves 48 h after 200 mM NaCl treatment by measuring lipid peroxidation, nitric oxide, and hydrogen peroxide contents, further supported by leaf stomatal conductance and chlorophyll readings. The salt-tolerant genotype TN1.11 displayed the lowest level of oxidative damage, in contrast to the salt sensitive TN6.18, which showed the highest responses. Metabolite profiling was employed to explore the differential genotype-related responses to stress at the molecular level. The metabolic data in the salt tolerant TN1.11 roots revealed an accumulation of metabolites related to the raffinose pathway. To further investigate the sensitivity to salinity, global transcriptomic profiling using microarray analysis was carried out on the salt-stressed sensitive genotypes. In TN6.18, the transcriptomic analysis identified a lower expression of many genes related to stress signalling, not previously linked to salinity, and corresponding to the gene class. Overall, this global approach contributes to gaining significant new insights into the complexity of stress adaptive mechanisms and to the identification of potential targets for crop improvement.

摘要

盐胁迫是通过影响植物生理和代谢来限制植物生产力的一个重要因素。为了探究模式豆科植物中的耐盐适应性机制,我们使用了三种对盐敏感性不同的基因型:TN6.18(高度敏感)、Jemalong A17(中度敏感)和TN1.11(耐受)。在200 mM NaCl处理48小时后,通过测量脂质过氧化、一氧化氮和过氧化氢含量来监测根和叶中的细胞损伤情况,叶气孔导度和叶绿素读数进一步支持了这一结果。与盐敏感的TN6.18表现出最高的响应相反,耐盐基因型TN1.11表现出最低水平的氧化损伤。采用代谢物谱分析来探究不同基因型在分子水平上对胁迫的相关响应。耐盐的TN1.11根中的代谢数据显示与棉子糖途径相关的代谢物积累。为了进一步研究对盐度的敏感性,对盐胁迫敏感基因型进行了基于微阵列分析的全转录组谱分析。在TN6.18中,转录组分析鉴定出许多与胁迫信号传导相关的基因表达较低,这些基因以前未与盐度相关联,并且对应于 基因类别。总体而言,这种全局方法有助于深入了解胁迫适应性机制的复杂性,并有助于确定作物改良的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44a4/8085674/743ad98fea5d/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验