Kokkonen Mikko, Talebi Parisa, Zhou Jin, Asgari Somayyeh, Soomro Sohail Ahmed, Elsehrawy Farid, Halme Janne, Ahmad Shahzada, Hagfeldt Anders, Hashmi Syed Ghufran
Microelectronics Research Unit, Faculty of Information Technology & Electrical Engineering, University of Oulu P. O. Box 4500 FI-90014 Finland
Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland.
J Mater Chem A Mater. 2021 Mar 10;9(17):10527-10545. doi: 10.1039/d1ta00690h.
Dye-sensitized solar cells (DSSCs) are an efficient photovoltaic technology for powering electronic applications such as wireless sensors with indoor light. Their low cost and abundant materials, as well as their capability to be manufactured as thin and light-weight flexible solar modules highlight their potential for economic indoor photovoltaics. However, their fabrication methods must be scaled to industrial manufacturing with high photovoltaic efficiency and performance stability under typical indoor conditions. This paper reviews the recent progress in DSSC research towards this goal through the development of new device structures, alternative redox shuttles, solid-state hole conductors, TiO photoelectrodes, catalyst materials, and sealing techniques. We discuss how each functional component of a DSSC has been improved with these new materials and fabrication techniques. In addition, we propose a scalable cell fabrication process that integrates these developments to a new monolithic cell design based on several features including inkjet and screen printing of the dye, a solid state hole conductor, PEDOT contact, compact TiO, mesoporous TiO, carbon nanotubes counter electrode, epoxy encapsulation layers and silver conductors. Finally, we discuss the need to design new stability testing protocols to assess the probable deployment of DSSCs in portable electronics and internet-of-things devices.
染料敏化太阳能电池(DSSC)是一种高效的光伏技术,可利用室内光线为诸如无线传感器等电子应用供电。其低成本、材料丰富,以及能够制造出轻薄且重量轻的柔性太阳能模块,凸显了其在经济实惠的室内光伏发电方面的潜力。然而,其制造方法必须扩大规模以实现工业化生产,使其在典型室内条件下具有高光伏效率和性能稳定性。本文通过开发新的器件结构、替代氧化还原穿梭体、固态空穴导体、TiO光电极、催化剂材料和密封技术,综述了DSSC研究在实现这一目标方面的最新进展。我们讨论了如何利用这些新材料和制造技术改进DSSC的每个功能组件。此外,我们提出了一种可扩展的电池制造工艺,该工艺基于包括染料的喷墨和丝网印刷、固态空穴导体、PEDOT接触、致密TiO、介孔TiO、碳纳米管对电极、环氧封装层和银导体等多种特性,将这些进展整合到一种新的单片电池设计中。最后,我们讨论了设计新的稳定性测试协议以评估DSSC在便携式电子产品和物联网设备中可能应用的必要性。