Laboratory of Photonics and Interfaces, Institute of Chemical Sciences &Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Laboratory of Photomolecular Science, Institute of Chemical Sciences &Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Nat Commun. 2017 Jun 9;8:15390. doi: 10.1038/ncomms15390.
Solid-state dye-sensitized solar cells currently suffer from issues such as inadequate nanopore filling, low conductivity and crystallization of hole-transport materials infiltrated in the mesoscopic TiO scaffolds, leading to low performances. Here we report a record 11% stable solid-state dye-sensitized solar cell under standard air mass 1.5 global using a hole-transport material composed of a blend of Cu (4,4',6,6'-tetramethyl-2,2'-bipyridine) and Cu (4,4',6,6'-tetramethyl-2,2'-bipyridine). The amorphous Cu(II/I) conductors that conduct holes by rapid hopping infiltrated in a 6.5 μm-thick mesoscopic TiO scaffold are crucial for achieving such high efficiency. Using time-resolved laser photolysis, we determine the time constants for electron injection from the photoexcited sensitizers Y123 into the TiO and regeneration of the Y123 by Cu(I) to be 25 ps and 3.2 μs, respectively. Our work will foster the development of low-cost solid-state photovoltaic based on transition metal complexes as hole conductors.
固态染料敏化太阳能电池目前存在一些问题,如纳米孔填充不足、孔传输材料在介孔 TiO 支架中的电导率低和结晶,导致性能低下。在这里,我们使用由 Cu(4,4',6,6'-四甲基-2,2'-联吡啶)和 Cu(4,4',6,6'-四甲基-2,2'-联吡啶)的混合物组成的空穴传输材料,报告了在标准空气比 1.5 全球下稳定的固态染料敏化太阳能电池的 11%的新纪录。在 6.5μm 厚的介孔 TiO 支架中快速跳跃传导空穴的无定形 Cu(II/I)导体对于实现如此高效率至关重要。通过时间分辨激光光解,我们确定从光激发的敏化剂 Y123 注入 TiO 和 Cu(I)再生 Y123 的电子注入时间常数分别为 25 ps 和 3.2 μs。我们的工作将促进基于过渡金属配合物作为空穴导体的低成本固态光伏的发展。