Suppr超能文献

基于代理的肾细胞癌肥胖悖论学习模型

Agent-Based Learning Model for the Obesity Paradox in RCC.

作者信息

Belenchia Matteo, Rocchetti Giacomo, Maestri Stefano, Cimadamore Alessia, Montironi Rodolfo, Santoni Matteo, Merelli Emanuela

机构信息

Laboratory of Data Science and Bioshape, School of Science and Technology, University of Camerino, Camerino, Italy.

Centre de Physique Théorique, Aix-Marseille University, Marseilles, France.

出版信息

Front Bioeng Biotechnol. 2021 Apr 29;9:642760. doi: 10.3389/fbioe.2021.642760. eCollection 2021.

Abstract

A recent study on the immunotherapy treatment of renal cell carcinoma reveals better outcomes in obese patients compared to lean subjects. This enigmatic contradiction has been explained, in the context of the debated obesity paradox, as the produced by the cell-cell interaction network on the tumor microenvironment during the immune response. To better understand this hypothesis, we provide a computational framework for the study of the tumor behavior. The starting model of the tumor, based on the cell-cell interaction network, has been described as a multiagent system, whose simulation generates the hypothesized effects on the tumor microenvironment. The medical needs in the immunotherapy design meet the capabilities of a multiagent simulator to reproduce the dynamics of the cell-cell interaction network, meaning a reaction to environmental changes introduced through the experimental data.

摘要

最近一项关于肾细胞癌免疫治疗的研究表明,与瘦人相比,肥胖患者的治疗效果更好。在备受争议的肥胖悖论背景下,这种神秘的矛盾被解释为免疫反应期间肿瘤微环境中细胞间相互作用网络产生的结果。为了更好地理解这一假设,我们提供了一个用于研究肿瘤行为的计算框架。基于细胞间相互作用网络的肿瘤起始模型已被描述为一个多智能体系统,其模拟产生对肿瘤微环境的假设效应。免疫治疗设计中的医学需求符合多智能体模拟器再现细胞间相互作用网络动态的能力,即对通过实验数据引入的环境变化做出反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca2e/8116955/9ae6205900c4/fbioe-09-642760-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验