Suppr超能文献

基于 LC-MS/MS 分析的抗生素处理小鼠肠道微生物组相关脂质代谢物的全局分析。

Global profiling of gut microbiota-associated lipid metabolites in antibiotic-treated mice by LC-MS/MS-based analyses.

机构信息

RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan.

出版信息

STAR Protoc. 2021 Apr 21;2(2):100492. doi: 10.1016/j.xpro.2021.100492. eCollection 2021 Jun 18.

Abstract

We describe a protocol for identifying bacteria-derived lipid metabolites produced in the guts using antibiotic-treated mice, liquid chromatography tandem mass spectrometry-based lipidomics, and feature-based molecular spectrum networking (FBMN). Untargeted lipidomics using the MS-DIAL 4 program provides information on known and unknown complex lipid molecules. The FBMN technique clusters similar MS2 spectra, facilitating the identification of bacterial lipids. Targeted analysis was used as a complementary method to cover oxylipins. Here, we provide details for targeted and untargeted analyses. For complete details on the use and execution of this protocol, please refer to Yasuda et al. (2020).

摘要

我们描述了一种使用抗生素处理的小鼠、基于液相色谱串联质谱的脂质组学和基于特征的分子谱网络(FBMN)来鉴定肠道中产生的细菌衍生脂质代谢物的方案。使用 MS-DIAL 4 程序进行的非靶向脂质组学提供了有关已知和未知复杂脂质分子的信息。FBMN 技术对相似的 MS2 光谱进行聚类,有助于鉴定细菌脂质。靶向分析被用作补充方法来覆盖氧化脂类。在这里,我们提供了针对目标和非目标分析的详细信息。有关该方案使用和执行的完整详细信息,请参阅 Yasuda 等人(2020 年)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/8091925/c794f7886720/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验