Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue, Columbus, Ohio 43210, United States.
Department of Chemistry, Kenyon College, Gambier, Ohio 43022, United States.
Anal Chem. 2021 Jun 1;93(21):7596-7605. doi: 10.1021/acs.analchem.0c05468. Epub 2021 May 17.
A variety of techniques involving the use of mass spectrometry (MS) have been developed to obtain structural information on proteins and protein complexes. One example of these techniques, surface-induced dissociation (SID), has been used to study the oligomeric state and connectivity of protein complexes. Recently, we demonstrated that appearance energies (AE) could be extracted from SID experiments and that they correlate with structural features of specific protein-protein interfaces. While SID AE provides some structural information, the AE data alone are not sufficient to determine the structures of the complexes. For this reason, we sought to supplement the data with computational modeling, through protein-protein docking. In a previous study, we demonstrated that the scoring of structures generated from protein-protein docking could be improved with the inclusion of SID data; however, this work relied on knowledge of the correct tertiary structure and only built full complexes for a few cases. Here, we performed docking using input structures that require less prior knowledge, using homology models, unbound crystal structures, and bound+perturbed crystal structures. Using flexible ensemble docking (to build primarily subcomplexes from an ensemble of backbone structures), the RMSD of all (15/15) predicted structures using the combined Rosetta, cryo-electron microscopy (cryo-EM), and SID score was less than 4 Å, compared to only 7/15 without SID and cryo-EM. Symmetric docking (which used symmetry to build full complexes) resulted in predicted structures with RMSD less than 4 Å for 14/15 cases with experimental data, compared to only 5/15 without SID and cryo-EM. Finally, we also developed a confidence metric for which all (26/26) proteins flagged as high confidence were accurately predicted.
各种涉及质谱 (MS) 技术的方法已被开发出来,以获取蛋白质和蛋白质复合物的结构信息。这些技术中的一个例子,表面诱导解离 (SID),已被用于研究蛋白质复合物的寡聚状态和连接性。最近,我们证明可以从 SID 实验中提取出表观能 (AE),并且它们与特定蛋白质-蛋白质界面的结构特征相关。虽然 SID AE 提供了一些结构信息,但仅 AEs 数据不足以确定复合物的结构。出于这个原因,我们寻求通过蛋白质-蛋白质对接来补充数据。在之前的研究中,我们证明了通过包含 SID 数据,可以提高从蛋白质-蛋白质对接生成的结构的评分;然而,这项工作依赖于正确的三级结构的知识,并且仅为少数情况构建了完整的复合物。在这里,我们使用需要较少先验知识的输入结构进行对接,使用同源建模、未结合的晶体结构和结合+扰动的晶体结构。使用灵活的整体对接(从一组骨架结构的集合中构建主要的亚复合物),使用组合 Rosetta、冷冻电子显微镜 (cryo-EM) 和 SID 评分的所有(15/15)预测结构的 RMSD 小于 4 Å,而没有 SID 和 cryo-EM 的则为 7/15。对称对接(使用对称构建完整的复合物)导致使用实验数据的情况下有 14/15 的预测结构的 RMSD 小于 4 Å,而没有 SID 和 cryo-EM 的则为 5/15。最后,我们还开发了一个置信度指标,其中所有(26/26)被标记为高置信度的蛋白质都被准确预测。