Department of Cardiology, Guglielmo Da Saliceto Hospital, Piacenza, Italy.
PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy.
J Med Internet Res. 2021 May 31;23(5):e29058. doi: 10.2196/29058.
BACKGROUND: Several models have been developed to predict mortality in patients with COVID-19 pneumonia, but only a few have demonstrated enough discriminatory capacity. Machine learning algorithms represent a novel approach for the data-driven prediction of clinical outcomes with advantages over statistical modeling. OBJECTIVE: We aimed to develop a machine learning-based score-the Piacenza score-for 30-day mortality prediction in patients with COVID-19 pneumonia. METHODS: The study comprised 852 patients with COVID-19 pneumonia, admitted to the Guglielmo da Saliceto Hospital in Italy from February to November 2020. Patients' medical history, demographics, and clinical data were collected using an electronic health record. The overall patient data set was randomly split into derivation and test cohorts. The score was obtained through the naïve Bayes classifier and externally validated on 86 patients admitted to Centro Cardiologico Monzino (Italy) in February 2020. Using a forward-search algorithm, 6 features were identified: age, mean corpuscular hemoglobin concentration, PaO/FiO ratio, temperature, previous stroke, and gender. The Brier index was used to evaluate the ability of the machine learning model to stratify and predict the observed outcomes. A user-friendly website was designed and developed to enable fast and easy use of the tool by physicians. Regarding the customization properties of the Piacenza score, we added a tailored version of the algorithm to the website, which enables an optimized computation of the mortality risk score for a patient when some of the variables used by the Piacenza score are not available. In this case, the naïve Bayes classifier is retrained over the same derivation cohort but using a different set of patient characteristics. We also compared the Piacenza score with the 4C score and with a naïve Bayes algorithm with 14 features chosen a priori. RESULTS: The Piacenza score exhibited an area under the receiver operating characteristic curve (AUC) of 0.78 (95% CI 0.74-0.84, Brier score=0.19) in the internal validation cohort and 0.79 (95% CI 0.68-0.89, Brier score=0.16) in the external validation cohort, showing a comparable accuracy with respect to the 4C score and to the naïve Bayes model with a priori chosen features; this achieved an AUC of 0.78 (95% CI 0.73-0.83, Brier score=0.26) and 0.80 (95% CI 0.75-0.86, Brier score=0.17), respectively. CONCLUSIONS: Our findings demonstrated that a customizable machine learning-based score with a purely data-driven selection of features is feasible and effective for the prediction of mortality among patients with COVID-19 pneumonia.
背景:已经开发出了多种模型来预测 COVID-19 肺炎患者的死亡率,但只有少数模型具有足够的区分能力。机器学习算法是一种新颖的方法,可以通过数据驱动的方式预测临床结果,具有优于统计建模的优势。
目的:我们旨在开发一种基于机器学习的评分系统-皮埃扎纳评分,用于预测 COVID-19 肺炎患者 30 天的死亡率。
方法:该研究纳入了 2020 年 2 月至 11 月期间来自意大利 Guglielmo da Saliceto 医院的 852 例 COVID-19 肺炎患者。使用电子病历收集患者的病史、人口统计学和临床数据。整个患者数据集被随机分为推导和测试队列。该评分通过朴素贝叶斯分类器获得,并在 2020 年 2 月意大利 Centro Cardiologico Monzino 收治的 86 例患者中进行了外部验证。使用前向搜索算法,确定了 6 个特征:年龄、平均红细胞血红蛋白浓度、PaO/FiO 比值、体温、既往卒中史和性别。使用 Brier 指数评估机器学习模型对分层和预测观察结果的能力。设计并开发了一个用户友好的网站,以便医生能够快速轻松地使用该工具。关于皮埃扎纳评分的定制属性,我们在网站上添加了一个针对算法的定制版本,当皮埃扎纳评分使用的某些变量不可用时,该版本可以优化计算患者的死亡率风险评分。在这种情况下,朴素贝叶斯分类器在同一推导队列上重新训练,但使用患者特征的不同集合。我们还将皮埃扎纳评分与 4C 评分和具有预先选择的 14 个特征的朴素贝叶斯算法进行了比较。
结果:皮埃扎纳评分在内部验证队列中的受试者工作特征曲线(ROC)下面积(AUC)为 0.78(95%CI 0.74-0.84,Brier 评分=0.19),在外部验证队列中的 AUC 为 0.79(95%CI 0.68-0.89,Brier 评分=0.16),与 4C 评分和具有预先选择特征的朴素贝叶斯模型相比具有相当的准确性;后者的 AUC 分别为 0.78(95%CI 0.73-0.83,Brier 评分=0.26)和 0.80(95%CI 0.75-0.86,Brier 评分=0.17)。
结论:我们的研究结果表明,基于机器学习的可定制评分系统,通过纯粹的数据驱动方法选择特征,对于预测 COVID-19 肺炎患者的死亡率是可行且有效的。
BMC Public Health. 2024-6-28
Clin Orthop Relat Res. 2019-10
Clin Orthop Relat Res. 2020-7
Diagnostics (Basel). 2024-2-20
BMC Med Inform Decis Mak. 2023-7-21
Health Sci Rep. 2023-3-30
Biomedicines. 2023-3-9
NPJ Digit Med. 2021-2-4
Sensors (Basel). 2021-1-24
Lancet Digit Health. 2020-9-22
J Med Internet Res. 2020-10-6