Suppr超能文献

人工智能增强型移动心血管健康管理系统。

Artificial-Intelligence-Enhanced Mobile System for Cardiovascular Health Management.

机构信息

School of Management, University of Science and Technology of China, Hefei 230026, China.

HeartVoice Medical Technology, Hefei 230027, China.

出版信息

Sensors (Basel). 2021 Jan 24;21(3):773. doi: 10.3390/s21030773.

Abstract

The number of patients with cardiovascular diseases is rapidly increasing in the world. The workload of existing clinicians is consequently increasing. However, the number of cardiovascular clinicians is declining. In this paper, we aim to design a mobile and automatic system to improve the abilities of patients' cardiovascular health management while also reducing clinicians' workload. Our system includes both hardware and cloud software devices based on recent advances in Internet of Things (IoT) and Artificial Intelligence (AI) technologies. A small hardware device was designed to collect high-quality Electrocardiogram (ECG) data from the human body. A novel deep-learning-based cloud service was developed and deployed to achieve automatic and accurate cardiovascular disease detection. Twenty types of diagnostic items including sinus rhythm, tachyarrhythmia, and bradyarrhythmia are supported. Experimental results show the effectiveness of our system. Our hardware device can guarantee high-quality ECG data by removing high-/low-frequency distortion and reverse lead detection with 0.9011 Area Under the Receiver Operating Characteristic Curve (ROC-AUC) score. Our deep-learning-based cloud service supports 20 types of diagnostic items, 17 of them have more than 0.98 ROC-AUC score. For a real world application, the system has been used by around 20,000 users in twenty provinces throughout China. As a consequence, using this service, we could achieve both active and passive health management through a lightweight mobile application on the WeChat Mini Program platform. We believe that it can have a broader impact on cardiovascular health management in the world.

摘要

心血管疾病患者的数量在全球范围内迅速增加。因此,现有的临床医生的工作量也在增加。然而,心血管临床医生的数量却在减少。在本文中,我们旨在设计一种移动和自动系统,以提高患者心血管健康管理能力,同时减轻临床医生的工作量。我们的系统基于物联网(IoT)和人工智能(AI)技术的最新进展,包括硬件和云软件设备。我们设计了一个小型硬件设备来从人体采集高质量的心电图(ECG)数据。开发并部署了一种新颖的基于深度学习的云服务,以实现心血管疾病的自动和准确检测。支持 20 种诊断项目,包括窦性节律、心动过速、心动过缓等。实验结果表明了我们系统的有效性。我们的硬件设备可以通过去除高低频失真和反向导联检测来保证高质量的 ECG 数据,其受试者工作特征曲线(ROC)下面积(AUC)得分为 0.9011。我们的基于深度学习的云服务支持 20 种诊断项目,其中 17 种的 ROC-AUC 得分超过 0.98。在实际应用中,该系统已经在中国 20 个省份被约 20,000 名用户使用。因此,通过微信小程序平台上的轻量级移动应用程序,我们可以使用该服务实现主动和被动的健康管理。我们相信,它可以对全球的心血管健康管理产生更广泛的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14c9/7865877/2228499de608/sensors-21-00773-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验