Zhang Haoyue, Patkar Sushant, Lis Rosina, Merino Maria J, Pinto Peter A, Choyke Peter L, Turkbey Baris, Harmon Stephanie
Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, Bethesda, MD 20814, USA.
Translational Surgical Pathology Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA.
Cancers (Basel). 2024 Nov 21;16(23):3897. doi: 10.3390/cancers16233897.
Detailed evaluation of prostate cancer glands is an essential yet labor-intensive step in grading prostate cancer. Gland segmentation can serve as a valuable preliminary step for machine-learning-based downstream tasks, such as Gleason grading, patient classification, cancer biomarker building, and survival analysis. Despite its importance, there is currently a lack of a reliable gland segmentation model for prostate cancer. Without accurate gland segmentation, researchers rely on cell-level or human-annotated regions of interest for pathomic and deep feature extraction. This approach is sub-optimal, as the extracted features are not explicitly tailored to gland information. Although foundational segmentation models have gained a lot of interest, we demonstrated the limitations of this approach. This work proposes a prostate gland segmentation framework that utilizes a dual-path Swin Transformer UNet structure and leverages Masked Image Modeling for large-scale self-supervised pretaining. A tumor-guided self-distillation step further fused the binary tumor labels of each patch to the encoder to ensure the encoders are suitable for the gland segmentation step. We united heterogeneous data sources for self-supervised training, including biopsy and surgical specimens, to reflect the diversity of benign and cancerous pathology features. We evaluated the segmentation performance on two publicly available prostate cancer datasets. We achieved state-of-the-art segmentation performance with a test mDice of 0.947 on the PANDA dataset and a test mDice of 0.664 on the SICAPv2 dataset.
前列腺癌腺体的详细评估是前列腺癌分级中至关重要但又耗费人力的一步。腺体分割可作为基于机器学习的下游任务(如 Gleason 分级、患者分类、癌症生物标志物构建和生存分析)的重要初步步骤。尽管其很重要,但目前缺乏用于前列腺癌的可靠腺体分割模型。没有准确的腺体分割,研究人员依赖细胞水平或人工标注的感兴趣区域进行病理特征和深度特征提取。这种方法并不理想,因为提取的特征并非专门针对腺体信息定制。尽管基础分割模型已引起广泛关注,但我们证明了这种方法的局限性。这项工作提出了一种前列腺腺体分割框架,该框架利用双路径 Swin Transformer UNet 结构,并利用掩码图像建模进行大规模自监督预训练。肿瘤引导的自蒸馏步骤进一步将每个补丁的二元肿瘤标签融合到编码器中,以确保编码器适用于腺体分割步骤。我们将包括活检和手术标本在内的异构数据源统一用于自监督训练,以反映良性和癌性病理特征的多样性。我们在两个公开可用的前列腺癌数据集上评估了分割性能。我们在 PANDA 数据集上的测试 mDice 为 0.947,在 SICAPv2 数据集上的测试 mDice 为 0.664,取得了当前最优的分割性能。